Metamath Proof Explorer


Theorem rmxadd

Description: Addition formula for X sequence. Equation 2.7 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxadd
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) )

Proof

Step Hyp Ref Expression
1 rmxyadd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) )
2 1 simpld
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) )