| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 2 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmX ( N - 1 ) ) e. NN0 ) |
| 4 |
3
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmX ( N - 1 ) ) e. CC ) |
| 5 |
1 4
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N - 1 ) ) e. CC ) |
| 6 |
|
peano2z |
|- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
| 7 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmX ( N + 1 ) ) e. NN0 ) |
| 8 |
7
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmX ( N + 1 ) ) e. CC ) |
| 9 |
6 8
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) e. CC ) |
| 10 |
5 9
|
addcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( A rmX ( N + 1 ) ) + ( A rmX ( N - 1 ) ) ) ) |
| 11 |
|
rmxp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
| 12 |
|
rmxm1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N - 1 ) ) = ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
| 13 |
11 12
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N + 1 ) ) + ( A rmX ( N - 1 ) ) ) = ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) ) |
| 14 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
| 15 |
14
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
| 16 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
| 17 |
16
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) |
| 18 |
15 17
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. A ) e. CC ) |
| 19 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
| 20 |
19
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
| 21 |
20
|
nncnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
| 22 |
21
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
| 23 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 24 |
23
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
| 26 |
22 25
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) e. CC ) |
| 27 |
17 15
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A x. ( A rmX N ) ) e. CC ) |
| 28 |
18 26 27
|
ppncand |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) = ( ( ( A rmX N ) x. A ) + ( A x. ( A rmX N ) ) ) ) |
| 29 |
15 17
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. A ) = ( A x. ( A rmX N ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. A ) + ( A x. ( A rmX N ) ) ) = ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) ) |
| 31 |
|
2cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) |
| 32 |
31 17 15
|
mulassd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmX N ) ) = ( 2 x. ( A x. ( A rmX N ) ) ) ) |
| 33 |
27
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( A x. ( A rmX N ) ) ) = ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) ) |
| 34 |
32 33
|
eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A x. ( A rmX N ) ) + ( A x. ( A rmX N ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) |
| 35 |
28 30 34
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) + ( ( A x. ( A rmX N ) ) - ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) |
| 36 |
10 13 35
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) |
| 37 |
|
2cn |
|- 2 e. CC |
| 38 |
|
mulcl |
|- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
| 39 |
37 17 38
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. A ) e. CC ) |
| 40 |
39 15
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmX N ) ) e. CC ) |
| 41 |
40 5 9
|
subaddd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) = ( A rmX ( N + 1 ) ) <-> ( ( A rmX ( N - 1 ) ) + ( A rmX ( N + 1 ) ) ) = ( ( 2 x. A ) x. ( A rmX N ) ) ) ) |
| 42 |
36 41
|
mpbird |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) = ( A rmX ( N + 1 ) ) ) |
| 43 |
42
|
eqcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmX N ) ) - ( A rmX ( N - 1 ) ) ) ) |