Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
rmxadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ 1 e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( A rmX N ) x. ( A rmX 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY 1 ) ) ) ) ) |
3 |
1 2
|
mp3an3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( A rmX N ) x. ( A rmX 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY 1 ) ) ) ) ) |
4 |
|
rmx1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) = A ) |
5 |
4
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX 1 ) = A ) |
6 |
5
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmX 1 ) ) = ( ( A rmX N ) x. A ) ) |
7 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
8 |
7
|
oveq2d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY N ) x. ( A rmY 1 ) ) = ( ( A rmY N ) x. 1 ) ) |
9 |
8
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY 1 ) ) = ( ( A rmY N ) x. 1 ) ) |
10 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
11 |
10
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
12 |
11
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
13 |
12
|
mulid1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. 1 ) = ( A rmY N ) ) |
14 |
9 13
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY 1 ) ) = ( A rmY N ) ) |
15 |
14
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY 1 ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) |
16 |
6 15
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmX 1 ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY 1 ) ) ) ) = ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |
17 |
3 16
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + 1 ) ) = ( ( ( A rmX N ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY N ) ) ) ) |