Metamath Proof Explorer


Theorem rmxy1

Description: Value of the X and Y sequences at 1. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxy1
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 1z
 |-  1 e. ZZ
2 rmxyval
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) )
3 1 2 mpan2
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) )
4 rmbaserp
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ )
5 4 rpcnd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC )
6 5 exp1d
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ 1 ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) )
7 rmspecpos
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ )
8 7 rpcnd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC )
9 8 sqrtcld
 |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC )
10 9 mulid1d
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) )
11 10 eqcomd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) )
12 11 oveq2d
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) )
13 3 6 12 3eqtrd
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) )
14 rmspecsqrtnq
 |-  ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) )
15 nn0ssq
 |-  NN0 C_ QQ
16 frmx
 |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0
17 16 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmX 1 ) e. NN0 )
18 1 17 mpan2
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) e. NN0 )
19 15 18 sselid
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) e. QQ )
20 zssq
 |-  ZZ C_ QQ
21 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
22 21 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmY 1 ) e. ZZ )
23 1 22 mpan2
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) e. ZZ )
24 20 23 sselid
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) e. QQ )
25 eluzelz
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. ZZ )
26 zq
 |-  ( A e. ZZ -> A e. QQ )
27 25 26 syl
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. QQ )
28 20 1 sselii
 |-  1 e. QQ
29 28 a1i
 |-  ( A e. ( ZZ>= ` 2 ) -> 1 e. QQ )
30 qirropth
 |-  ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX 1 ) e. QQ /\ ( A rmY 1 ) e. QQ ) /\ ( A e. QQ /\ 1 e. QQ ) ) -> ( ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) <-> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) ) )
31 14 19 24 27 29 30 syl122anc
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( ( A rmX 1 ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY 1 ) ) ) = ( A + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. 1 ) ) <-> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) ) )
32 13 31 mpbid
 |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A rmX 1 ) = A /\ ( A rmY 1 ) = 1 ) )