Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
2 |
|
zaddcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
3 |
2
|
3adant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
4 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + N ) e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) ) |
5 |
1 3 4
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) ) |
6 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
7 |
6
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. ZZ ) |
8 |
7
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. CC ) |
9 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
10 |
|
qsqcl |
|- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |
11 |
7 9 10
|
3syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A ^ 2 ) e. QQ ) |
12 |
|
zssq |
|- ZZ C_ QQ |
13 |
|
1z |
|- 1 e. ZZ |
14 |
12 13
|
sselii |
|- 1 e. QQ |
15 |
14
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> 1 e. QQ ) |
16 |
|
qsubcl |
|- ( ( ( A ^ 2 ) e. QQ /\ 1 e. QQ ) -> ( ( A ^ 2 ) - 1 ) e. QQ ) |
17 |
11 15 16
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. QQ ) |
18 |
|
qcn |
|- ( ( ( A ^ 2 ) - 1 ) e. QQ -> ( ( A ^ 2 ) - 1 ) e. CC ) |
19 |
17 18
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
20 |
19
|
sqrtcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
21 |
8 20
|
addcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) |
22 |
|
rmbaserp |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ ) |
23 |
22
|
rpne0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
24 |
23
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
25 |
|
simp2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
26 |
|
simp3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
27 |
|
expaddz |
|- ( ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC /\ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
28 |
21 24 25 26 27
|
syl22anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
29 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
30 |
29
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 ) |
31 |
30 1 25
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. NN0 ) |
32 |
31
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. CC ) |
33 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
34 |
33
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ ) |
35 |
34 1 25
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. ZZ ) |
36 |
35
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. CC ) |
37 |
20 36
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) e. CC ) |
38 |
30 1 26
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
39 |
38
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
40 |
34 1 26
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
41 |
40
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
42 |
20 41
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) e. CC ) |
43 |
32 37 39 42
|
muladdd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) ) |
44 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) ) |
45 |
1 25 44
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) ) |
46 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
47 |
1 26 46
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
48 |
45 47
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
49 |
43 48
|
eqtr3d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
50 |
20 41 20 36
|
mul4d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) x. ( ( A rmY N ) x. ( A rmY M ) ) ) ) |
51 |
19
|
msqsqrtd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( ( A ^ 2 ) - 1 ) ) |
52 |
41 36
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY M ) ) = ( ( A rmY M ) x. ( A rmY N ) ) ) |
53 |
51 52
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) x. ( ( A rmY N ) x. ( A rmY M ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) |
54 |
50 53
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) |
55 |
54
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) ) |
56 |
32 20 41
|
mul12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
57 |
39 20 36
|
mul12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) |
58 |
56 57
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) ) |
59 |
32 41
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. CC ) |
60 |
39 36
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY M ) ) e. CC ) |
61 |
20 59 60
|
adddid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) ) |
62 |
59 60
|
addcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) = ( ( ( A rmX N ) x. ( A rmY M ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
63 |
39 36
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY M ) ) = ( ( A rmY M ) x. ( A rmX N ) ) ) |
64 |
63
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmY M ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
65 |
62 64
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
66 |
65
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |
67 |
58 61 66
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |
68 |
55 67
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
69 |
28 49 68
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
70 |
5 69
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
71 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
72 |
71
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
73 |
|
nn0ssq |
|- NN0 C_ QQ |
74 |
30 1 3
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) e. NN0 ) |
75 |
73 74
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) e. QQ ) |
76 |
34 1 3
|
fovrnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY ( M + N ) ) e. ZZ ) |
77 |
12 76
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY ( M + N ) ) e. QQ ) |
78 |
73 31
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. QQ ) |
79 |
73 38
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. QQ ) |
80 |
|
qmulcl |
|- ( ( ( A rmX M ) e. QQ /\ ( A rmX N ) e. QQ ) -> ( ( A rmX M ) x. ( A rmX N ) ) e. QQ ) |
81 |
78 79 80
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmX N ) ) e. QQ ) |
82 |
12 35
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. QQ ) |
83 |
12 40
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. QQ ) |
84 |
|
qmulcl |
|- ( ( ( A rmY M ) e. QQ /\ ( A rmY N ) e. QQ ) -> ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) |
85 |
82 83 84
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) |
86 |
|
qmulcl |
|- ( ( ( ( A ^ 2 ) - 1 ) e. QQ /\ ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) |
87 |
17 85 86
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) |
88 |
|
qaddcl |
|- ( ( ( ( A rmX M ) x. ( A rmX N ) ) e. QQ /\ ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ ) |
89 |
81 87 88
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ ) |
90 |
|
qmulcl |
|- ( ( ( A rmY M ) e. QQ /\ ( A rmX N ) e. QQ ) -> ( ( A rmY M ) x. ( A rmX N ) ) e. QQ ) |
91 |
82 79 90
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY M ) x. ( A rmX N ) ) e. QQ ) |
92 |
|
qmulcl |
|- ( ( ( A rmX M ) e. QQ /\ ( A rmY N ) e. QQ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) |
93 |
78 83 92
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) |
94 |
|
qaddcl |
|- ( ( ( ( A rmY M ) x. ( A rmX N ) ) e. QQ /\ ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) -> ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) |
95 |
91 93 94
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) |
96 |
|
qirropth |
|- ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX ( M + N ) ) e. QQ /\ ( A rmY ( M + N ) ) e. QQ ) /\ ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ /\ ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) ) -> ( ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) <-> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
97 |
72 75 77 89 95 96
|
syl122anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) <-> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
98 |
70 97
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |