Step |
Hyp |
Ref |
Expression |
1 |
|
rmxypairf1o |
|- ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
2 |
1
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
3 |
|
rmxyelqirr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
4 |
|
f1ocnvdm |
|- ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } /\ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) -> ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) e. ( NN0 X. ZZ ) ) |
5 |
2 3 4
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) e. ( NN0 X. ZZ ) ) |