Step |
Hyp |
Ref |
Expression |
1 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
2 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. ZZ ) -> ( ( A rmX -u N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY -u N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ -u N ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX -u N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY -u N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ -u N ) ) |
4 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
5 |
4
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 1 / ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) = ( 1 / ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
6 |
|
rmbaserp |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ ) |
7 |
6
|
rpcnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) |
8 |
7
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) |
9 |
6
|
rpne0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
10 |
9
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
11 |
|
simpr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. ZZ ) |
12 |
8 10 11
|
expclzd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. CC ) |
13 |
4 12
|
eqeltrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) e. CC ) |
14 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
15 |
14
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
16 |
15
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
17 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
18 |
17
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
19 |
18
|
nncnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
20 |
19
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
21 |
20
|
sqrtcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
22 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
23 |
22
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
24 |
23
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
25 |
24
|
negcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> -u ( A rmY N ) e. CC ) |
26 |
21 25
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) e. CC ) |
27 |
16 26
|
addcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) e. CC ) |
28 |
8 10 11
|
expne0d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) =/= 0 ) |
29 |
4 28
|
eqnetrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) =/= 0 ) |
30 |
21 24
|
mulneg2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) = -u ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) |
31 |
30
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) = ( ( A rmX N ) + -u ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) |
32 |
21 24
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) e. CC ) |
33 |
16 32
|
negsubd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + -u ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A rmX N ) - ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) |
34 |
31 33
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) = ( ( A rmX N ) - ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) |
35 |
34
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) ) = ( ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) x. ( ( A rmX N ) - ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) ) |
36 |
|
subsq |
|- ( ( ( A rmX N ) e. CC /\ ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) e. CC ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) ) = ( ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) x. ( ( A rmX N ) - ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) ) |
37 |
16 32 36
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) ) = ( ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) x. ( ( A rmX N ) - ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) ) |
38 |
21 24
|
sqmuld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ^ 2 ) x. ( ( A rmY N ) ^ 2 ) ) ) |
39 |
20
|
sqsqrtd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ^ 2 ) = ( ( A ^ 2 ) - 1 ) ) |
40 |
39
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ^ 2 ) x. ( ( A rmY N ) ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) |
41 |
38 40
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) |
42 |
41
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) ) = ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) |
43 |
|
rmxynorm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) |
44 |
42 43
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ^ 2 ) ) = 1 ) |
45 |
35 37 44
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) ) = 1 ) |
46 |
13 27 29 45
|
mvllmuld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) = ( 1 / ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) ) |
47 |
8 10 11
|
expnegd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ -u N ) = ( 1 / ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
48 |
5 46 47
|
3eqtr4rd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ -u N ) = ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) ) |
49 |
3 48
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX -u N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY -u N ) ) ) = ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) ) |
50 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
51 |
50
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
52 |
|
nn0ssq |
|- NN0 C_ QQ |
53 |
14
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. ZZ ) -> ( A rmX -u N ) e. NN0 ) |
54 |
1 53
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX -u N ) e. NN0 ) |
55 |
52 54
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX -u N ) e. QQ ) |
56 |
|
zssq |
|- ZZ C_ QQ |
57 |
22
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. ZZ ) -> ( A rmY -u N ) e. ZZ ) |
58 |
1 57
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY -u N ) e. ZZ ) |
59 |
56 58
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY -u N ) e. QQ ) |
60 |
52 15
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. QQ ) |
61 |
56 23
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. QQ ) |
62 |
|
qnegcl |
|- ( ( A rmY N ) e. QQ -> -u ( A rmY N ) e. QQ ) |
63 |
61 62
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> -u ( A rmY N ) e. QQ ) |
64 |
|
qirropth |
|- ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX -u N ) e. QQ /\ ( A rmY -u N ) e. QQ ) /\ ( ( A rmX N ) e. QQ /\ -u ( A rmY N ) e. QQ ) ) -> ( ( ( A rmX -u N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY -u N ) ) ) = ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) <-> ( ( A rmX -u N ) = ( A rmX N ) /\ ( A rmY -u N ) = -u ( A rmY N ) ) ) ) |
65 |
51 55 59 60 63 64
|
syl122anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX -u N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY -u N ) ) ) = ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. -u ( A rmY N ) ) ) <-> ( ( A rmX -u N ) = ( A rmX N ) /\ ( A rmY -u N ) = -u ( A rmY N ) ) ) ) |
66 |
49 65
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX -u N ) = ( A rmX N ) /\ ( A rmY -u N ) = -u ( A rmY N ) ) ) |