Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. ZZ ) |
2 |
|
eqidd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX N ) = ( A rmX N ) ) |
3 |
|
eqidd |
|- ( N e. ZZ -> ( A rmY N ) = ( A rmY N ) ) |
4 |
2 3
|
anim12i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) = ( A rmX N ) /\ ( A rmY N ) = ( A rmY N ) ) ) |
5 |
|
oveq2 |
|- ( a = N -> ( A rmX a ) = ( A rmX N ) ) |
6 |
5
|
eqeq2d |
|- ( a = N -> ( ( A rmX N ) = ( A rmX a ) <-> ( A rmX N ) = ( A rmX N ) ) ) |
7 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
8 |
7
|
eqeq2d |
|- ( a = N -> ( ( A rmY N ) = ( A rmY a ) <-> ( A rmY N ) = ( A rmY N ) ) ) |
9 |
6 8
|
anbi12d |
|- ( a = N -> ( ( ( A rmX N ) = ( A rmX a ) /\ ( A rmY N ) = ( A rmY a ) ) <-> ( ( A rmX N ) = ( A rmX N ) /\ ( A rmY N ) = ( A rmY N ) ) ) ) |
10 |
9
|
rspcev |
|- ( ( N e. ZZ /\ ( ( A rmX N ) = ( A rmX N ) /\ ( A rmY N ) = ( A rmY N ) ) ) -> E. a e. ZZ ( ( A rmX N ) = ( A rmX a ) /\ ( A rmY N ) = ( A rmY a ) ) ) |
11 |
1 4 10
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> E. a e. ZZ ( ( A rmX N ) = ( A rmX a ) /\ ( A rmY N ) = ( A rmY a ) ) ) |
12 |
|
simpl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
13 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
14 |
13
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
15 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
16 |
15
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
17 |
|
rmxycomplete |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( A rmX N ) e. NN0 /\ ( A rmY N ) e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 <-> E. a e. ZZ ( ( A rmX N ) = ( A rmX a ) /\ ( A rmY N ) = ( A rmY a ) ) ) ) |
18 |
12 14 16 17
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 <-> E. a e. ZZ ( ( A rmX N ) = ( A rmX a ) /\ ( A rmY N ) = ( A rmY a ) ) ) ) |
19 |
11 18
|
mpbird |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) |