Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
|- ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) e. _V |
2 |
|
eqid |
|- ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) |
3 |
1 2
|
fnmpti |
|- ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) |
4 |
3
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) ) |
5 |
2
|
rnmpt |
|- ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) } |
6 |
|
vex |
|- c e. _V |
7 |
|
vex |
|- d e. _V |
8 |
6 7
|
op1std |
|- ( b = <. c , d >. -> ( 1st ` b ) = c ) |
9 |
6 7
|
op2ndd |
|- ( b = <. c , d >. -> ( 2nd ` b ) = d ) |
10 |
9
|
oveq2d |
|- ( b = <. c , d >. -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) |
11 |
8 10
|
oveq12d |
|- ( b = <. c , d >. -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) |
12 |
11
|
eqeq2d |
|- ( b = <. c , d >. -> ( a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) <-> a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) ) |
13 |
12
|
rexxp |
|- ( E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) <-> E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) ) |
14 |
13
|
bicomi |
|- ( E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) <-> E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) |
15 |
14
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> ( E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) <-> E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) |
16 |
15
|
abbidv |
|- ( A e. ( ZZ>= ` 2 ) -> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } = { a | E. b e. ( NN0 X. ZZ ) a = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) } ) |
17 |
5 16
|
eqtr4id |
|- ( A e. ( ZZ>= ` 2 ) -> ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
18 |
|
fveq2 |
|- ( b = c -> ( 1st ` b ) = ( 1st ` c ) ) |
19 |
|
fveq2 |
|- ( b = c -> ( 2nd ` b ) = ( 2nd ` c ) ) |
20 |
19
|
oveq2d |
|- ( b = c -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) |
21 |
18 20
|
oveq12d |
|- ( b = c -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) |
22 |
|
ovex |
|- ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) e. _V |
23 |
21 2 22
|
fvmpt |
|- ( c e. ( NN0 X. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) |
24 |
23
|
ad2antrl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) ) |
25 |
|
fveq2 |
|- ( b = d -> ( 1st ` b ) = ( 1st ` d ) ) |
26 |
|
fveq2 |
|- ( b = d -> ( 2nd ` b ) = ( 2nd ` d ) ) |
27 |
26
|
oveq2d |
|- ( b = d -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) |
28 |
25 27
|
oveq12d |
|- ( b = d -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) |
29 |
|
ovex |
|- ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) e. _V |
30 |
28 2 29
|
fvmpt |
|- ( d e. ( NN0 X. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) |
31 |
30
|
ad2antll |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) |
32 |
24 31
|
eqeq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) <-> ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) ) ) |
33 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
34 |
33
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
35 |
|
nn0ssq |
|- NN0 C_ QQ |
36 |
|
xp1st |
|- ( c e. ( NN0 X. ZZ ) -> ( 1st ` c ) e. NN0 ) |
37 |
36
|
ad2antrl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` c ) e. NN0 ) |
38 |
35 37
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` c ) e. QQ ) |
39 |
|
xp2nd |
|- ( c e. ( NN0 X. ZZ ) -> ( 2nd ` c ) e. ZZ ) |
40 |
39
|
ad2antrl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` c ) e. ZZ ) |
41 |
|
zq |
|- ( ( 2nd ` c ) e. ZZ -> ( 2nd ` c ) e. QQ ) |
42 |
40 41
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` c ) e. QQ ) |
43 |
|
xp1st |
|- ( d e. ( NN0 X. ZZ ) -> ( 1st ` d ) e. NN0 ) |
44 |
43
|
ad2antll |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` d ) e. NN0 ) |
45 |
35 44
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 1st ` d ) e. QQ ) |
46 |
|
xp2nd |
|- ( d e. ( NN0 X. ZZ ) -> ( 2nd ` d ) e. ZZ ) |
47 |
46
|
ad2antll |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` d ) e. ZZ ) |
48 |
|
zq |
|- ( ( 2nd ` d ) e. ZZ -> ( 2nd ` d ) e. QQ ) |
49 |
47 48
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( 2nd ` d ) e. QQ ) |
50 |
|
qirropth |
|- ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( 1st ` c ) e. QQ /\ ( 2nd ` c ) e. QQ ) /\ ( ( 1st ` d ) e. QQ /\ ( 2nd ` d ) e. QQ ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) <-> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) |
51 |
34 38 42 45 49 50
|
syl122anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) <-> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) |
52 |
51
|
biimpd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) -> ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) ) ) |
53 |
|
xpopth |
|- ( ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) -> ( ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) <-> c = d ) ) |
54 |
53
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) = ( 1st ` d ) /\ ( 2nd ` c ) = ( 2nd ` d ) ) <-> c = d ) ) |
55 |
52 54
|
sylibd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( 1st ` c ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` c ) ) ) = ( ( 1st ` d ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` d ) ) ) -> c = d ) ) |
56 |
32 55
|
sylbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( c e. ( NN0 X. ZZ ) /\ d e. ( NN0 X. ZZ ) ) ) -> ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) |
57 |
56
|
ralrimivva |
|- ( A e. ( ZZ>= ` 2 ) -> A. c e. ( NN0 X. ZZ ) A. d e. ( NN0 X. ZZ ) ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) |
58 |
|
dff1o6 |
|- ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } <-> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) Fn ( NN0 X. ZZ ) /\ ran ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } /\ A. c e. ( NN0 X. ZZ ) A. d e. ( NN0 X. ZZ ) ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` c ) = ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` d ) -> c = d ) ) ) |
59 |
4 17 57 58
|
syl3anbrc |
|- ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |