Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( a = 0 -> ( A rmX a ) = ( A rmX 0 ) ) |
2 |
1
|
breq2d |
|- ( a = 0 -> ( 0 < ( A rmX a ) <-> 0 < ( A rmX 0 ) ) ) |
3 |
|
oveq2 |
|- ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) ) |
4 |
3
|
breq2d |
|- ( a = 0 -> ( 0 <_ ( A rmY a ) <-> 0 <_ ( A rmY 0 ) ) ) |
5 |
2 4
|
anbi12d |
|- ( a = 0 -> ( ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) <-> ( 0 < ( A rmX 0 ) /\ 0 <_ ( A rmY 0 ) ) ) ) |
6 |
5
|
imbi2d |
|- ( a = 0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX 0 ) /\ 0 <_ ( A rmY 0 ) ) ) ) ) |
7 |
|
oveq2 |
|- ( a = b -> ( A rmX a ) = ( A rmX b ) ) |
8 |
7
|
breq2d |
|- ( a = b -> ( 0 < ( A rmX a ) <-> 0 < ( A rmX b ) ) ) |
9 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
10 |
9
|
breq2d |
|- ( a = b -> ( 0 <_ ( A rmY a ) <-> 0 <_ ( A rmY b ) ) ) |
11 |
8 10
|
anbi12d |
|- ( a = b -> ( ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) <-> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) ) |
12 |
11
|
imbi2d |
|- ( a = b -> ( ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) ) ) |
13 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmX a ) = ( A rmX ( b + 1 ) ) ) |
14 |
13
|
breq2d |
|- ( a = ( b + 1 ) -> ( 0 < ( A rmX a ) <-> 0 < ( A rmX ( b + 1 ) ) ) ) |
15 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) ) |
16 |
15
|
breq2d |
|- ( a = ( b + 1 ) -> ( 0 <_ ( A rmY a ) <-> 0 <_ ( A rmY ( b + 1 ) ) ) ) |
17 |
14 16
|
anbi12d |
|- ( a = ( b + 1 ) -> ( ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) <-> ( 0 < ( A rmX ( b + 1 ) ) /\ 0 <_ ( A rmY ( b + 1 ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX ( b + 1 ) ) /\ 0 <_ ( A rmY ( b + 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
|- ( a = N -> ( A rmX a ) = ( A rmX N ) ) |
20 |
19
|
breq2d |
|- ( a = N -> ( 0 < ( A rmX a ) <-> 0 < ( A rmX N ) ) ) |
21 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
22 |
21
|
breq2d |
|- ( a = N -> ( 0 <_ ( A rmY a ) <-> 0 <_ ( A rmY N ) ) ) |
23 |
20 22
|
anbi12d |
|- ( a = N -> ( ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) <-> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) ) ) |
24 |
23
|
imbi2d |
|- ( a = N -> ( ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) ) ) ) |
25 |
|
0lt1 |
|- 0 < 1 |
26 |
|
rmx0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 0 ) = 1 ) |
27 |
25 26
|
breqtrrid |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( A rmX 0 ) ) |
28 |
|
0le0 |
|- 0 <_ 0 |
29 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
30 |
28 29
|
breqtrrid |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ ( A rmY 0 ) ) |
31 |
27 30
|
jca |
|- ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX 0 ) /\ 0 <_ ( A rmY 0 ) ) ) |
32 |
|
simp2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
33 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
34 |
33
|
3ad2ant1 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> b e. ZZ ) |
35 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
36 |
35
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX b ) e. NN0 ) |
37 |
32 34 36
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmX b ) e. NN0 ) |
38 |
37
|
nn0red |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmX b ) e. RR ) |
39 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
40 |
39
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> A e. RR ) |
41 |
38 40
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( ( A rmX b ) x. A ) e. RR ) |
42 |
|
rmspecpos |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR+ ) |
43 |
42
|
rpred |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. RR ) |
44 |
43
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( ( A ^ 2 ) - 1 ) e. RR ) |
45 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
46 |
45
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
47 |
32 34 46
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmY b ) e. ZZ ) |
48 |
47
|
zred |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmY b ) e. RR ) |
49 |
44 48
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) e. RR ) |
50 |
|
simp3l |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 < ( A rmX b ) ) |
51 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
52 |
51
|
nngt0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < A ) |
53 |
52
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 < A ) |
54 |
38 40 50 53
|
mulgt0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 < ( ( A rmX b ) x. A ) ) |
55 |
42
|
rpge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ ( ( A ^ 2 ) - 1 ) ) |
56 |
55
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( ( A ^ 2 ) - 1 ) ) |
57 |
|
simp3r |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( A rmY b ) ) |
58 |
44 48 56 57
|
mulge0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) |
59 |
41 49 54 58
|
addgtge0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 < ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
60 |
|
rmxp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
61 |
32 34 60
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
62 |
59 61
|
breqtrrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 < ( A rmX ( b + 1 ) ) ) |
63 |
48 40
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( ( A rmY b ) x. A ) e. RR ) |
64 |
|
eluzge2nn0 |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) |
65 |
64
|
nn0ge0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 <_ A ) |
66 |
65
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ A ) |
67 |
48 40 57 66
|
mulge0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( ( A rmY b ) x. A ) ) |
68 |
37
|
nn0ge0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( A rmX b ) ) |
69 |
63 38 67 68
|
addge0d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
70 |
|
rmyp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
71 |
32 34 70
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
72 |
69 71
|
breqtrrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> 0 <_ ( A rmY ( b + 1 ) ) ) |
73 |
62 72
|
jca |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( 0 < ( A rmX ( b + 1 ) ) /\ 0 <_ ( A rmY ( b + 1 ) ) ) ) |
74 |
73
|
3exp |
|- ( b e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) -> ( 0 < ( A rmX ( b + 1 ) ) /\ 0 <_ ( A rmY ( b + 1 ) ) ) ) ) ) |
75 |
74
|
a2d |
|- ( b e. NN0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX ( b + 1 ) ) /\ 0 <_ ( A rmY ( b + 1 ) ) ) ) ) ) |
76 |
6 12 18 24 31 75
|
nn0ind |
|- ( N e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) ) ) |
77 |
76
|
impcom |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) ) |