Step |
Hyp |
Ref |
Expression |
1 |
|
rmxfval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) = ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |
2 |
|
rmyfval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) = ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |
3 |
2
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) |
4 |
1 3
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) ) |
5 |
|
rmxyelxp |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) e. ( NN0 X. ZZ ) ) |
6 |
|
fveq2 |
|- ( a = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) -> ( 1st ` a ) = ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |
7 |
|
fveq2 |
|- ( a = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) -> ( 2nd ` a ) = ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |
8 |
7
|
oveq2d |
|- ( a = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` a ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) |
9 |
6 8
|
oveq12d |
|- ( a = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) -> ( ( 1st ` a ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` a ) ) ) = ( ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) ) |
10 |
|
fveq2 |
|- ( b = a -> ( 1st ` b ) = ( 1st ` a ) ) |
11 |
|
fveq2 |
|- ( b = a -> ( 2nd ` b ) = ( 2nd ` a ) ) |
12 |
11
|
oveq2d |
|- ( b = a -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` a ) ) ) |
13 |
10 12
|
oveq12d |
|- ( b = a -> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` a ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` a ) ) ) ) |
14 |
13
|
cbvmptv |
|- ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = ( a e. ( NN0 X. ZZ ) |-> ( ( 1st ` a ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` a ) ) ) ) |
15 |
|
ovex |
|- ( ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) e. _V |
16 |
9 14 15
|
fvmpt |
|- ( ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) e. ( NN0 X. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) = ( ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) ) |
17 |
5 16
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) = ( ( 1st ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) ) ) |
18 |
|
rmxypairf1o |
|- ( A e. ( ZZ>= ` 2 ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
19 |
18
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
20 |
|
rmxyelqirr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) |
21 |
|
f1ocnvfv2 |
|- ( ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) : ( NN0 X. ZZ ) -1-1-onto-> { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } /\ ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) e. { a | E. c e. NN0 E. d e. ZZ a = ( c + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. d ) ) } ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
23 |
4 17 22
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |