| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 2 |
1
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) |
| 3 |
2
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) |
| 4 |
|
simp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> A e. ( ZZ>= ` 2 ) ) |
| 5 |
|
elnn0z |
|- ( a e. NN0 <-> ( a e. ZZ /\ 0 <_ a ) ) |
| 6 |
5
|
biimpri |
|- ( ( a e. ZZ /\ 0 <_ a ) -> a e. NN0 ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> a e. NN0 ) |
| 8 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) |
| 9 |
4 7 8
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) |
| 10 |
9
|
simprd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ ( A rmY a ) ) |
| 11 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY -u b ) = -u ( A rmY b ) ) |
| 12 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
| 13 |
|
oveq2 |
|- ( a = -u b -> ( A rmY a ) = ( A rmY -u b ) ) |
| 14 |
|
oveq2 |
|- ( a = B -> ( A rmY a ) = ( A rmY B ) ) |
| 15 |
|
oveq2 |
|- ( a = ( abs ` B ) -> ( A rmY a ) = ( A rmY ( abs ` B ) ) ) |
| 16 |
3 10 11 12 13 14 15
|
oddcomabszz |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( abs ` ( A rmY B ) ) = ( A rmY ( abs ` B ) ) ) |