Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
3 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
4 |
|
oveq2 |
|- ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) ) |
5 |
|
zssre |
|- ZZ C_ RR |
6 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
7 |
6
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) |
8 |
7
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) |
9 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b <-> ( A rmY a ) < ( A rmY b ) ) ) |
10 |
9
|
biimpd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) |
11 |
10
|
3expb |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) |
12 |
2 3 4 5 8 11
|
eqord1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ 0 e. ZZ ) ) -> ( N = 0 <-> ( A rmY N ) = ( A rmY 0 ) ) ) |
13 |
1 12
|
mpanr2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N = 0 <-> ( A rmY N ) = ( A rmY 0 ) ) ) |
14 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
15 |
14
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY 0 ) = 0 ) |
16 |
15
|
eqeq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) = ( A rmY 0 ) <-> ( A rmY N ) = 0 ) ) |
17 |
13 16
|
bitrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N = 0 <-> ( A rmY N ) = 0 ) ) |