Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) ) |
2 |
1
|
fvoveq1d |
|- ( a = A -> ( sqrt ` ( ( a ^ 2 ) - 1 ) ) = ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) |
3 |
2
|
oveq1d |
|- ( a = A -> ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) |
4 |
3
|
oveq2d |
|- ( a = A -> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) = ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) |
5 |
4
|
mpteq2dv |
|- ( a = A -> ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) |
6 |
5
|
cnveqd |
|- ( a = A -> `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) |
7 |
6
|
adantr |
|- ( ( a = A /\ n = N ) -> `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) = `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ) |
8 |
|
id |
|- ( a = A -> a = A ) |
9 |
8 2
|
oveq12d |
|- ( a = A -> ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) = ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ) |
10 |
|
id |
|- ( n = N -> n = N ) |
11 |
9 10
|
oveqan12d |
|- ( ( a = A /\ n = N ) -> ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
12 |
7 11
|
fveq12d |
|- ( ( a = A /\ n = N ) -> ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) = ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
13 |
12
|
fveq2d |
|- ( ( a = A /\ n = N ) -> ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) = ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |
14 |
|
df-rmy |
|- rmY = ( a e. ( ZZ>= ` 2 ) , n e. ZZ |-> ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( a ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( a + ( sqrt ` ( ( a ^ 2 ) - 1 ) ) ) ^ n ) ) ) ) |
15 |
|
fvex |
|- ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) e. _V |
16 |
13 14 15
|
ovmpoa |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) = ( 2nd ` ( `' ( b e. ( NN0 X. ZZ ) |-> ( ( 1st ` b ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( 2nd ` b ) ) ) ) ` ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) ) |