Step |
Hyp |
Ref |
Expression |
1 |
|
peano2z |
|- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
2 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmY ( N + 1 ) ) e. ZZ ) |
4 |
1 3
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) e. ZZ ) |
5 |
4
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) e. CC ) |
6 |
|
2cn |
|- 2 e. CC |
7 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
8 |
7
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
9 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
10 |
9
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) |
11 |
8 10
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. A ) e. CC ) |
12 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( A rmY N ) x. A ) e. CC ) -> ( 2 x. ( ( A rmY N ) x. A ) ) e. CC ) |
13 |
6 11 12
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) e. CC ) |
14 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
15 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
16 |
14 15
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
17 |
16
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) e. CC ) |
18 |
13 17
|
subcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) e. CC ) |
19 |
|
rmyp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) ) |
20 |
|
rmym1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |
21 |
19 20
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY ( N + 1 ) ) + ( A rmY ( N - 1 ) ) ) = ( ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) + ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) ) |
22 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
23 |
22
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
24 |
23
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
25 |
11 24 11
|
ppncand |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmY N ) x. A ) + ( A rmX N ) ) + ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) = ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) ) |
26 |
13 17
|
npcand |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) = ( 2 x. ( ( A rmY N ) x. A ) ) ) |
27 |
11
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) ) |
28 |
26 27
|
eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. A ) + ( ( A rmY N ) x. A ) ) = ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) ) |
29 |
21 25 28
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY ( N + 1 ) ) + ( A rmY ( N - 1 ) ) ) = ( ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) + ( A rmY ( N - 1 ) ) ) ) |
30 |
5 18 17 29
|
addcan2ad |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) ) |