Step |
Hyp |
Ref |
Expression |
1 |
|
rmyluc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) ) |
2 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
4 |
3
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
5 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
6 |
5
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) |
7 |
4 6
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. A ) = ( A x. ( A rmY N ) ) ) |
8 |
7
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( 2 x. ( A x. ( A rmY N ) ) ) ) |
9 |
|
2cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) |
10 |
9 6 4
|
mulassd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmY N ) ) = ( 2 x. ( A x. ( A rmY N ) ) ) ) |
11 |
8 10
|
eqtr4d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( ( 2 x. A ) x. ( A rmY N ) ) ) |
12 |
11
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) = ( ( ( 2 x. A ) x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |
13 |
1 12
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |