| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmyluc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) ) | 
						
							| 2 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 3 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 4 | 3 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) | 
						
							| 5 |  | eluzelcn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. CC ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) | 
						
							| 7 | 4 6 | mulcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. A ) = ( A x. ( A rmY N ) ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( 2 x. ( A x. ( A rmY N ) ) ) ) | 
						
							| 9 |  | 2cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) | 
						
							| 10 | 9 6 4 | mulassd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. A ) x. ( A rmY N ) ) = ( 2 x. ( A x. ( A rmY N ) ) ) ) | 
						
							| 11 | 8 10 | eqtr4d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmY N ) x. A ) ) = ( ( 2 x. A ) x. ( A rmY N ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( ( A rmY N ) x. A ) ) - ( A rmY ( N - 1 ) ) ) = ( ( ( 2 x. A ) x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) | 
						
							| 13 | 1 12 | eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |