| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 2 |
1
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) |
| 3 |
|
ax-1cn |
|- 1 e. CC |
| 4 |
|
negsub |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N + -u 1 ) = ( N - 1 ) ) |
| 5 |
2 3 4
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N + -u 1 ) = ( N - 1 ) ) |
| 6 |
5
|
eqcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N - 1 ) = ( N + -u 1 ) ) |
| 7 |
6
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) = ( A rmY ( N + -u 1 ) ) ) |
| 8 |
|
neg1z |
|- -u 1 e. ZZ |
| 9 |
|
rmyadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ -u 1 e. ZZ ) -> ( A rmY ( N + -u 1 ) ) = ( ( ( A rmY N ) x. ( A rmX -u 1 ) ) + ( ( A rmX N ) x. ( A rmY -u 1 ) ) ) ) |
| 10 |
8 9
|
mp3an3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + -u 1 ) ) = ( ( ( A rmY N ) x. ( A rmX -u 1 ) ) + ( ( A rmX N ) x. ( A rmY -u 1 ) ) ) ) |
| 11 |
|
1z |
|- 1 e. ZZ |
| 12 |
|
rmxneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmX -u 1 ) = ( A rmX 1 ) ) |
| 13 |
11 12
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX -u 1 ) = ( A rmX 1 ) ) |
| 14 |
|
rmx1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX 1 ) = A ) |
| 15 |
13 14
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmX -u 1 ) = A ) |
| 16 |
15
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX -u 1 ) = A ) |
| 17 |
16
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmX -u 1 ) ) = ( ( A rmY N ) x. A ) ) |
| 18 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 1 e. ZZ ) -> ( A rmY -u 1 ) = -u ( A rmY 1 ) ) |
| 19 |
11 18
|
mpan2 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY -u 1 ) = -u ( A rmY 1 ) ) |
| 20 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
| 21 |
20
|
negeqd |
|- ( A e. ( ZZ>= ` 2 ) -> -u ( A rmY 1 ) = -u 1 ) |
| 22 |
19 21
|
eqtrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY -u 1 ) = -u 1 ) |
| 23 |
22
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY -u 1 ) = -u 1 ) |
| 24 |
23
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY -u 1 ) ) = ( ( A rmX N ) x. -u 1 ) ) |
| 25 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 26 |
25
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
| 27 |
26
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
| 28 |
|
neg1cn |
|- -u 1 e. CC |
| 29 |
|
mulcom |
|- ( ( ( A rmX N ) e. CC /\ -u 1 e. CC ) -> ( ( A rmX N ) x. -u 1 ) = ( -u 1 x. ( A rmX N ) ) ) |
| 30 |
27 28 29
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. -u 1 ) = ( -u 1 x. ( A rmX N ) ) ) |
| 31 |
27
|
mulm1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( -u 1 x. ( A rmX N ) ) = -u ( A rmX N ) ) |
| 32 |
24 30 31
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY -u 1 ) ) = -u ( A rmX N ) ) |
| 33 |
17 32
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. ( A rmX -u 1 ) ) + ( ( A rmX N ) x. ( A rmY -u 1 ) ) ) = ( ( ( A rmY N ) x. A ) + -u ( A rmX N ) ) ) |
| 34 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 35 |
34
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
| 36 |
35
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
| 37 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
| 38 |
37
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> A e. CC ) |
| 39 |
36 38
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) x. A ) e. CC ) |
| 40 |
39 27
|
negsubd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. A ) + -u ( A rmX N ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |
| 41 |
33 40
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. ( A rmX -u 1 ) ) + ( ( A rmX N ) x. ( A rmY -u 1 ) ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |
| 42 |
7 10 41
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |