Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
4 |
1 3
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. ZZ ) |
5 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
6 |
5
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) = 0 ) |
7 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
8 |
7
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < N ) |
9 |
|
simpl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. ( ZZ>= ` 2 ) ) |
10 |
|
0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 e. ZZ ) |
11 |
1
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) |
12 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ N e. ZZ ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
14 |
8 13
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) < ( A rmY N ) ) |
15 |
6 14
|
eqbrtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY N ) ) |
16 |
|
elnnz |
|- ( ( A rmY N ) e. NN <-> ( ( A rmY N ) e. ZZ /\ 0 < ( A rmY N ) ) ) |
17 |
4 15 16
|
sylanbrc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. NN ) |