| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnascl.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | rnascl.o |  |-  .1. = ( 1r ` W ) | 
						
							| 3 |  | rnascl.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 6 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 7 | 1 4 5 6 2 | asclfval |  |-  A = ( y e. ( Base ` ( Scalar ` W ) ) |-> ( y ( .s ` W ) .1. ) ) | 
						
							| 8 | 7 | rnmpt |  |-  ran A = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } | 
						
							| 9 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 10 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 11 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 12 | 11 2 | ringidcl |  |-  ( W e. Ring -> .1. e. ( Base ` W ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( W e. AssAlg -> .1. e. ( Base ` W ) ) | 
						
							| 14 | 4 5 11 6 3 | lspsn |  |-  ( ( W e. LMod /\ .1. e. ( Base ` W ) ) -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) | 
						
							| 15 | 9 13 14 | syl2anc |  |-  ( W e. AssAlg -> ( N ` { .1. } ) = { x | E. y e. ( Base ` ( Scalar ` W ) ) x = ( y ( .s ` W ) .1. ) } ) | 
						
							| 16 | 8 15 | eqtr4id |  |-  ( W e. AssAlg -> ran A = ( N ` { .1. } ) ) |