Step |
Hyp |
Ref |
Expression |
1 |
|
rnasclassa.a |
|- A = ( algSc ` W ) |
2 |
|
rnasclassa.u |
|- U = ( W |`s ran A ) |
3 |
|
rnasclassa.w |
|- ( ph -> W e. AssAlg ) |
4 |
|
ssidd |
|- ( ph -> ran A C_ ran A ) |
5 |
1 3
|
rnasclsubrg |
|- ( ph -> ran A e. ( SubRing ` W ) ) |
6 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
7 |
1 6
|
issubassa2 |
|- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A e. ( LSubSp ` W ) <-> ran A C_ ran A ) ) |
8 |
2 6
|
issubassa3 |
|- ( ( W e. AssAlg /\ ( ran A e. ( SubRing ` W ) /\ ran A e. ( LSubSp ` W ) ) ) -> U e. AssAlg ) |
9 |
8
|
expr |
|- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A e. ( LSubSp ` W ) -> U e. AssAlg ) ) |
10 |
7 9
|
sylbird |
|- ( ( W e. AssAlg /\ ran A e. ( SubRing ` W ) ) -> ( ran A C_ ran A -> U e. AssAlg ) ) |
11 |
3 5 10
|
syl2anc |
|- ( ph -> ( ran A C_ ran A -> U e. AssAlg ) ) |
12 |
4 11
|
mpd |
|- ( ph -> U e. AssAlg ) |