Description: (Vector) multiplication is closed for scalar multiples of the unit vector. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnasclmulcl.c | |- C = ( algSc ` W ) |
|
rnasclmulcl.x | |- .X. = ( .r ` W ) |
||
rnasclmulcl.w | |- ( ph -> W e. AssAlg ) |
||
Assertion | rnasclmulcl | |- ( ( ph /\ ( X e. ran C /\ Y e. ran C ) ) -> ( X .X. Y ) e. ran C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnasclmulcl.c | |- C = ( algSc ` W ) |
|
2 | rnasclmulcl.x | |- .X. = ( .r ` W ) |
|
3 | rnasclmulcl.w | |- ( ph -> W e. AssAlg ) |
|
4 | 1 3 | rnasclsubrg | |- ( ph -> ran C e. ( SubRing ` W ) ) |
5 | 2 | subrgmcl | |- ( ( ran C e. ( SubRing ` W ) /\ X e. ran C /\ Y e. ran C ) -> ( X .X. Y ) e. ran C ) |
6 | 4 5 | syl3an1 | |- ( ( ph /\ X e. ran C /\ Y e. ran C ) -> ( X .X. Y ) e. ran C ) |
7 | 6 | 3expb | |- ( ( ph /\ ( X e. ran C /\ Y e. ran C ) ) -> ( X .X. Y ) e. ran C ) |