Metamath Proof Explorer


Theorem rnasclsubrg

Description: The scalar multiples of the unit vector form a subring of the vectors. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses rnasclsubrg.c
|- C = ( algSc ` W )
rnasclsubrg.w
|- ( ph -> W e. AssAlg )
Assertion rnasclsubrg
|- ( ph -> ran C e. ( SubRing ` W ) )

Proof

Step Hyp Ref Expression
1 rnasclsubrg.c
 |-  C = ( algSc ` W )
2 rnasclsubrg.w
 |-  ( ph -> W e. AssAlg )
3 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
4 1 3 asclrhm
 |-  ( W e. AssAlg -> C e. ( ( Scalar ` W ) RingHom W ) )
5 rnrhmsubrg
 |-  ( C e. ( ( Scalar ` W ) RingHom W ) -> ran C e. ( SubRing ` W ) )
6 2 4 5 3syl
 |-  ( ph -> ran C e. ( SubRing ` W ) )