Description: The scalar multiples of the unit vector form a subring of the vectors. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnasclsubrg.c | |- C = ( algSc ` W ) |
|
rnasclsubrg.w | |- ( ph -> W e. AssAlg ) |
||
Assertion | rnasclsubrg | |- ( ph -> ran C e. ( SubRing ` W ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnasclsubrg.c | |- C = ( algSc ` W ) |
|
2 | rnasclsubrg.w | |- ( ph -> W e. AssAlg ) |
|
3 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
4 | 1 3 | asclrhm | |- ( W e. AssAlg -> C e. ( ( Scalar ` W ) RingHom W ) ) |
5 | rnrhmsubrg | |- ( C e. ( ( Scalar ` W ) RingHom W ) -> ran C e. ( SubRing ` W ) ) |
|
6 | 2 4 5 | 3syl | |- ( ph -> ran C e. ( SubRing ` W ) ) |