| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnfncnbd |  |-  ( t e. LinFn -> ( t e. ContFn <-> ( normfn ` t ) e. RR ) ) | 
						
							| 2 | 1 | pm5.32i |  |-  ( ( t e. LinFn /\ t e. ContFn ) <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) | 
						
							| 3 |  | elin |  |-  ( t e. ( LinFn i^i ContFn ) <-> ( t e. LinFn /\ t e. ContFn ) ) | 
						
							| 4 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 5 | 4 | mptex |  |-  ( y e. ~H |-> ( y .ih x ) ) e. _V | 
						
							| 6 |  | df-bra |  |-  bra = ( x e. ~H |-> ( y e. ~H |-> ( y .ih x ) ) ) | 
						
							| 7 | 5 6 | fnmpti |  |-  bra Fn ~H | 
						
							| 8 |  | fvelrnb |  |-  ( bra Fn ~H -> ( t e. ran bra <-> E. x e. ~H ( bra ` x ) = t ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( t e. ran bra <-> E. x e. ~H ( bra ` x ) = t ) | 
						
							| 10 |  | bralnfn |  |-  ( x e. ~H -> ( bra ` x ) e. LinFn ) | 
						
							| 11 |  | brabn |  |-  ( x e. ~H -> ( normfn ` ( bra ` x ) ) e. RR ) | 
						
							| 12 | 10 11 | jca |  |-  ( x e. ~H -> ( ( bra ` x ) e. LinFn /\ ( normfn ` ( bra ` x ) ) e. RR ) ) | 
						
							| 13 |  | eleq1 |  |-  ( ( bra ` x ) = t -> ( ( bra ` x ) e. LinFn <-> t e. LinFn ) ) | 
						
							| 14 |  | fveq2 |  |-  ( ( bra ` x ) = t -> ( normfn ` ( bra ` x ) ) = ( normfn ` t ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( ( bra ` x ) = t -> ( ( normfn ` ( bra ` x ) ) e. RR <-> ( normfn ` t ) e. RR ) ) | 
						
							| 16 | 13 15 | anbi12d |  |-  ( ( bra ` x ) = t -> ( ( ( bra ` x ) e. LinFn /\ ( normfn ` ( bra ` x ) ) e. RR ) <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) ) | 
						
							| 17 | 12 16 | syl5ibcom |  |-  ( x e. ~H -> ( ( bra ` x ) = t -> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) ) | 
						
							| 18 | 17 | rexlimiv |  |-  ( E. x e. ~H ( bra ` x ) = t -> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) | 
						
							| 19 |  | riesz1 |  |-  ( t e. LinFn -> ( ( normfn ` t ) e. RR <-> E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) ) ) | 
						
							| 20 | 19 | biimpa |  |-  ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) ) | 
						
							| 21 |  | braval |  |-  ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) ` y ) = ( y .ih x ) ) | 
						
							| 22 |  | eqtr3 |  |-  ( ( ( ( bra ` x ) ` y ) = ( y .ih x ) /\ ( t ` y ) = ( y .ih x ) ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( bra ` x ) ` y ) = ( y .ih x ) -> ( ( t ` y ) = ( y .ih x ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 24 | 21 23 | syl |  |-  ( ( x e. ~H /\ y e. ~H ) -> ( ( t ` y ) = ( y .ih x ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 25 | 24 | ralimdva |  |-  ( x e. ~H -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 27 |  | brafn |  |-  ( x e. ~H -> ( bra ` x ) : ~H --> CC ) | 
						
							| 28 |  | lnfnf |  |-  ( t e. LinFn -> t : ~H --> CC ) | 
						
							| 29 | 28 | adantr |  |-  ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> t : ~H --> CC ) | 
						
							| 30 |  | ffn |  |-  ( ( bra ` x ) : ~H --> CC -> ( bra ` x ) Fn ~H ) | 
						
							| 31 |  | ffn |  |-  ( t : ~H --> CC -> t Fn ~H ) | 
						
							| 32 |  | eqfnfv |  |-  ( ( ( bra ` x ) Fn ~H /\ t Fn ~H ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 33 | 30 31 32 | syl2an |  |-  ( ( ( bra ` x ) : ~H --> CC /\ t : ~H --> CC ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 34 | 27 29 33 | syl2anr |  |-  ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) | 
						
							| 35 | 26 34 | sylibrd |  |-  ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> ( bra ` x ) = t ) ) | 
						
							| 36 | 35 | reximdva |  |-  ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> ( E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) -> E. x e. ~H ( bra ` x ) = t ) ) | 
						
							| 37 | 20 36 | mpd |  |-  ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> E. x e. ~H ( bra ` x ) = t ) | 
						
							| 38 | 18 37 | impbii |  |-  ( E. x e. ~H ( bra ` x ) = t <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) | 
						
							| 39 | 9 38 | bitri |  |-  ( t e. ran bra <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) | 
						
							| 40 | 2 3 39 | 3bitr4ri |  |-  ( t e. ran bra <-> t e. ( LinFn i^i ContFn ) ) | 
						
							| 41 | 40 | eqriv |  |-  ran bra = ( LinFn i^i ContFn ) |