Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
vex |
|- y e. _V |
3 |
1 2
|
brco |
|- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
4 |
3
|
exbii |
|- ( E. x x ( A o. B ) y <-> E. x E. z ( x B z /\ z A y ) ) |
5 |
|
excom |
|- ( E. x E. z ( x B z /\ z A y ) <-> E. z E. x ( x B z /\ z A y ) ) |
6 |
|
vex |
|- z e. _V |
7 |
6
|
elrn |
|- ( z e. ran B <-> E. x x B z ) |
8 |
7
|
anbi1i |
|- ( ( z e. ran B /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
9 |
2
|
brresi |
|- ( z ( A |` ran B ) y <-> ( z e. ran B /\ z A y ) ) |
10 |
|
19.41v |
|- ( E. x ( x B z /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
11 |
8 9 10
|
3bitr4ri |
|- ( E. x ( x B z /\ z A y ) <-> z ( A |` ran B ) y ) |
12 |
11
|
exbii |
|- ( E. z E. x ( x B z /\ z A y ) <-> E. z z ( A |` ran B ) y ) |
13 |
4 5 12
|
3bitri |
|- ( E. x x ( A o. B ) y <-> E. z z ( A |` ran B ) y ) |
14 |
2
|
elrn |
|- ( y e. ran ( A o. B ) <-> E. x x ( A o. B ) y ) |
15 |
2
|
elrn |
|- ( y e. ran ( A |` ran B ) <-> E. z z ( A |` ran B ) y ) |
16 |
13 14 15
|
3bitr4i |
|- ( y e. ran ( A o. B ) <-> y e. ran ( A |` ran B ) ) |
17 |
16
|
eqriv |
|- ran ( A o. B ) = ran ( A |` ran B ) |