| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- x e. _V |
| 2 |
|
vex |
|- y e. _V |
| 3 |
1 2
|
brco |
|- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
| 4 |
3
|
exbii |
|- ( E. x x ( A o. B ) y <-> E. x E. z ( x B z /\ z A y ) ) |
| 5 |
|
excom |
|- ( E. x E. z ( x B z /\ z A y ) <-> E. z E. x ( x B z /\ z A y ) ) |
| 6 |
|
vex |
|- z e. _V |
| 7 |
6
|
elrn |
|- ( z e. ran B <-> E. x x B z ) |
| 8 |
7
|
anbi1i |
|- ( ( z e. ran B /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
| 9 |
2
|
brresi |
|- ( z ( A |` ran B ) y <-> ( z e. ran B /\ z A y ) ) |
| 10 |
|
19.41v |
|- ( E. x ( x B z /\ z A y ) <-> ( E. x x B z /\ z A y ) ) |
| 11 |
8 9 10
|
3bitr4ri |
|- ( E. x ( x B z /\ z A y ) <-> z ( A |` ran B ) y ) |
| 12 |
11
|
exbii |
|- ( E. z E. x ( x B z /\ z A y ) <-> E. z z ( A |` ran B ) y ) |
| 13 |
4 5 12
|
3bitri |
|- ( E. x x ( A o. B ) y <-> E. z z ( A |` ran B ) y ) |
| 14 |
2
|
elrn |
|- ( y e. ran ( A o. B ) <-> E. x x ( A o. B ) y ) |
| 15 |
2
|
elrn |
|- ( y e. ran ( A |` ran B ) <-> E. z z ( A |` ran B ) y ) |
| 16 |
13 14 15
|
3bitr4i |
|- ( y e. ran ( A o. B ) <-> y e. ran ( A |` ran B ) ) |
| 17 |
16
|
eqriv |
|- ran ( A o. B ) = ran ( A |` ran B ) |