| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmcoeq |  |-  ( dom `' B = ran `' A -> dom ( `' B o. `' A ) = dom `' A ) | 
						
							| 2 |  | eqcom |  |-  ( dom A = ran B <-> ran B = dom A ) | 
						
							| 3 |  | df-rn |  |-  ran B = dom `' B | 
						
							| 4 |  | dfdm4 |  |-  dom A = ran `' A | 
						
							| 5 | 3 4 | eqeq12i |  |-  ( ran B = dom A <-> dom `' B = ran `' A ) | 
						
							| 6 | 2 5 | bitri |  |-  ( dom A = ran B <-> dom `' B = ran `' A ) | 
						
							| 7 |  | df-rn |  |-  ran ( A o. B ) = dom `' ( A o. B ) | 
						
							| 8 |  | cnvco |  |-  `' ( A o. B ) = ( `' B o. `' A ) | 
						
							| 9 | 8 | dmeqi |  |-  dom `' ( A o. B ) = dom ( `' B o. `' A ) | 
						
							| 10 | 7 9 | eqtri |  |-  ran ( A o. B ) = dom ( `' B o. `' A ) | 
						
							| 11 |  | df-rn |  |-  ran A = dom `' A | 
						
							| 12 | 10 11 | eqeq12i |  |-  ( ran ( A o. B ) = ran A <-> dom ( `' B o. `' A ) = dom `' A ) | 
						
							| 13 | 1 6 12 | 3imtr4i |  |-  ( dom A = ran B -> ran ( A o. B ) = ran A ) |