Metamath Proof Explorer


Theorem rncoss

Description: Range of a composition. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion rncoss
|- ran ( A o. B ) C_ ran A

Proof

Step Hyp Ref Expression
1 dmcoss
 |-  dom ( `' B o. `' A ) C_ dom `' A
2 df-rn
 |-  ran ( A o. B ) = dom `' ( A o. B )
3 cnvco
 |-  `' ( A o. B ) = ( `' B o. `' A )
4 3 dmeqi
 |-  dom `' ( A o. B ) = dom ( `' B o. `' A )
5 2 4 eqtri
 |-  ran ( A o. B ) = dom ( `' B o. `' A )
6 df-rn
 |-  ran A = dom `' A
7 1 5 6 3sstr4i
 |-  ran ( A o. B ) C_ ran A