Step |
Hyp |
Ref |
Expression |
1 |
|
rndrhmcl.r |
|- R = ( N |`s ran F ) |
2 |
|
rndrhmcl.1 |
|- .0. = ( 0g ` N ) |
3 |
|
rndrhmcl.h |
|- ( ph -> F e. ( M RingHom N ) ) |
4 |
|
rndrhmcl.2 |
|- ( ph -> ran F =/= { .0. } ) |
5 |
|
rndrhmcl.m |
|- ( ph -> M e. DivRing ) |
6 |
|
imadmrn |
|- ( F " dom F ) = ran F |
7 |
6
|
oveq2i |
|- ( N |`s ( F " dom F ) ) = ( N |`s ran F ) |
8 |
1 7
|
eqtr4i |
|- R = ( N |`s ( F " dom F ) ) |
9 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
10 |
|
eqid |
|- ( Base ` N ) = ( Base ` N ) |
11 |
9 10
|
rhmf |
|- ( F e. ( M RingHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
12 |
3 11
|
syl |
|- ( ph -> F : ( Base ` M ) --> ( Base ` N ) ) |
13 |
12
|
fdmd |
|- ( ph -> dom F = ( Base ` M ) ) |
14 |
9
|
sdrgid |
|- ( M e. DivRing -> ( Base ` M ) e. ( SubDRing ` M ) ) |
15 |
5 14
|
syl |
|- ( ph -> ( Base ` M ) e. ( SubDRing ` M ) ) |
16 |
13 15
|
eqeltrd |
|- ( ph -> dom F e. ( SubDRing ` M ) ) |
17 |
8 2 3 16 4
|
imadrhmcl |
|- ( ph -> R e. DivRing ) |