Step |
Hyp |
Ref |
Expression |
1 |
|
filtop |
|- ( L e. ( Fil ` X ) -> X e. L ) |
2 |
1
|
3ad2ant2 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) |
3 |
|
simp1 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y e. A ) |
4 |
|
simp3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> F : Y --> X ) |
5 |
|
fmf |
|- ( ( X e. L /\ Y e. A /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) |
7 |
6
|
ffnd |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) |
8 |
|
fvelrnb |
|- ( ( X FilMap F ) Fn ( fBas ` Y ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) |
9 |
7 8
|
syl |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) |
10 |
|
ffn |
|- ( F : Y --> X -> F Fn Y ) |
11 |
|
dffn4 |
|- ( F Fn Y <-> F : Y -onto-> ran F ) |
12 |
10 11
|
sylib |
|- ( F : Y --> X -> F : Y -onto-> ran F ) |
13 |
|
foima |
|- ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) |
14 |
12 13
|
syl |
|- ( F : Y --> X -> ( F " Y ) = ran F ) |
15 |
14
|
ad2antlr |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) = ran F ) |
16 |
|
simpll |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> X e. L ) |
17 |
|
simpr |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> b e. ( fBas ` Y ) ) |
18 |
|
simplr |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> F : Y --> X ) |
19 |
|
fgcl |
|- ( b e. ( fBas ` Y ) -> ( Y filGen b ) e. ( Fil ` Y ) ) |
20 |
|
filtop |
|- ( ( Y filGen b ) e. ( Fil ` Y ) -> Y e. ( Y filGen b ) ) |
21 |
19 20
|
syl |
|- ( b e. ( fBas ` Y ) -> Y e. ( Y filGen b ) ) |
22 |
21
|
adantl |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> Y e. ( Y filGen b ) ) |
23 |
|
eqid |
|- ( Y filGen b ) = ( Y filGen b ) |
24 |
23
|
imaelfm |
|- ( ( ( X e. L /\ b e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen b ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) |
25 |
16 17 18 22 24
|
syl31anc |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) |
26 |
15 25
|
eqeltrrd |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ran F e. ( ( X FilMap F ) ` b ) ) |
27 |
|
eleq2 |
|- ( ( ( X FilMap F ) ` b ) = L -> ( ran F e. ( ( X FilMap F ) ` b ) <-> ran F e. L ) ) |
28 |
26 27
|
syl5ibcom |
|- ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) |
29 |
28
|
ex |
|- ( ( X e. L /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
30 |
1 29
|
sylan |
|- ( ( L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
31 |
30
|
3adant1 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) |
32 |
31
|
rexlimdv |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) |
33 |
9 32
|
sylbid |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) -> ran F e. L ) ) |
34 |
|
simpl2 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ( Fil ` X ) ) |
35 |
|
filelss |
|- ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) |
36 |
35
|
ex |
|- ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) |
37 |
34 36
|
syl |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> t C_ X ) ) |
38 |
|
simpr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> t e. L ) |
39 |
|
eqidd |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) = ( `' F " t ) ) |
40 |
|
imaeq2 |
|- ( x = t -> ( `' F " x ) = ( `' F " t ) ) |
41 |
40
|
rspceeqv |
|- ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
42 |
38 39 41
|
syl2anc |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) |
43 |
|
simpl1 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) |
44 |
|
cnvimass |
|- ( `' F " t ) C_ dom F |
45 |
|
fdm |
|- ( F : Y --> X -> dom F = Y ) |
46 |
44 45
|
sseqtrid |
|- ( F : Y --> X -> ( `' F " t ) C_ Y ) |
47 |
46
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " t ) C_ Y ) |
48 |
47
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) C_ Y ) |
49 |
43 48
|
ssexd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) e. _V ) |
50 |
|
eqid |
|- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
51 |
50
|
elrnmpt |
|- ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
52 |
49 51
|
syl |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
53 |
52
|
adantr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) |
54 |
42 53
|
mpbird |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
55 |
|
ssid |
|- ( `' F " t ) C_ ( `' F " t ) |
56 |
|
ffun |
|- ( F : Y --> X -> Fun F ) |
57 |
56
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> Fun F ) |
59 |
|
funimass3 |
|- ( ( Fun F /\ ( `' F " t ) C_ dom F ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) |
60 |
58 44 59
|
sylancl |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) |
61 |
55 60
|
mpbiri |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) |
62 |
|
imaeq2 |
|- ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) |
63 |
62
|
sseq1d |
|- ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) |
64 |
63
|
rspcev |
|- ( ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) |
65 |
54 61 64
|
syl2anc |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) |
66 |
65
|
ex |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) |
67 |
37 66
|
jcad |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
68 |
34
|
adantr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> L e. ( Fil ` X ) ) |
69 |
50
|
elrnmpt |
|- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
70 |
69
|
elv |
|- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
71 |
|
ssid |
|- ( `' F " x ) C_ ( `' F " x ) |
72 |
57
|
ad3antrrr |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> Fun F ) |
73 |
|
cnvimass |
|- ( `' F " x ) C_ dom F |
74 |
|
funimass3 |
|- ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) |
75 |
72 73 74
|
sylancl |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) |
76 |
71 75
|
mpbiri |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ x ) |
77 |
|
imassrn |
|- ( F " ( `' F " x ) ) C_ ran F |
78 |
|
ssin |
|- ( ( ( F " ( `' F " x ) ) C_ x /\ ( F " ( `' F " x ) ) C_ ran F ) <-> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) |
79 |
76 77 78
|
sylanblc |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) |
80 |
|
elin |
|- ( z e. ( x i^i ran F ) <-> ( z e. x /\ z e. ran F ) ) |
81 |
|
fvelrnb |
|- ( F Fn Y -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
82 |
10 81
|
syl |
|- ( F : Y --> X -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
83 |
82
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
84 |
83
|
ad3antrrr |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) |
85 |
72
|
ad2antrr |
|- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> Fun F ) |
86 |
85 73
|
jctir |
|- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( Fun F /\ ( `' F " x ) C_ dom F ) ) |
87 |
57
|
ad2antrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> Fun F ) |
88 |
87
|
ad2antrr |
|- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> Fun F ) |
89 |
45
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> dom F = Y ) |
90 |
89
|
ad3antrrr |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> dom F = Y ) |
91 |
90
|
eleq2d |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( y e. dom F <-> y e. Y ) ) |
92 |
91
|
biimpar |
|- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> y e. dom F ) |
93 |
|
fvimacnv |
|- ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
94 |
88 92 93
|
syl2anc |
|- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) |
95 |
94
|
biimpa |
|- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> y e. ( `' F " x ) ) |
96 |
|
funfvima2 |
|- ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( y e. ( `' F " x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) |
97 |
86 95 96
|
sylc |
|- ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) |
98 |
97
|
ex |
|- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) |
99 |
|
eleq1 |
|- ( ( F ` y ) = z -> ( ( F ` y ) e. x <-> z e. x ) ) |
100 |
|
eleq1 |
|- ( ( F ` y ) = z -> ( ( F ` y ) e. ( F " ( `' F " x ) ) <-> z e. ( F " ( `' F " x ) ) ) ) |
101 |
99 100
|
imbi12d |
|- ( ( F ` y ) = z -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) <-> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
102 |
98 101
|
syl5ibcom |
|- ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
103 |
102
|
rexlimdva |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( E. y e. Y ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
104 |
84 103
|
sylbid |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) |
105 |
104
|
impcomd |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( z e. x /\ z e. ran F ) -> z e. ( F " ( `' F " x ) ) ) ) |
106 |
80 105
|
syl5bi |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ( x i^i ran F ) -> z e. ( F " ( `' F " x ) ) ) ) |
107 |
106
|
ssrdv |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) C_ ( F " ( `' F " x ) ) ) |
108 |
79 107
|
eqssd |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) = ( x i^i ran F ) ) |
109 |
|
filin |
|- ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) |
110 |
109
|
3exp |
|- ( L e. ( Fil ` X ) -> ( x e. L -> ( ran F e. L -> ( x i^i ran F ) e. L ) ) ) |
111 |
110
|
com23 |
|- ( L e. ( Fil ` X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) |
112 |
111
|
3ad2ant2 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) |
113 |
112
|
imp31 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( x i^i ran F ) e. L ) |
114 |
113
|
adantr |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) e. L ) |
115 |
108 114
|
eqeltrd |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) e. L ) |
116 |
115
|
exp32 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) |
117 |
|
imaeq2 |
|- ( s = ( `' F " x ) -> ( F " s ) = ( F " ( `' F " x ) ) ) |
118 |
117
|
sseq1d |
|- ( s = ( `' F " x ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " x ) ) C_ t ) ) |
119 |
117
|
eleq1d |
|- ( s = ( `' F " x ) -> ( ( F " s ) e. L <-> ( F " ( `' F " x ) ) e. L ) ) |
120 |
119
|
imbi2d |
|- ( s = ( `' F " x ) -> ( ( t C_ X -> ( F " s ) e. L ) <-> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) |
121 |
118 120
|
imbi12d |
|- ( s = ( `' F " x ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) <-> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) ) |
122 |
116 121
|
syl5ibrcom |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
123 |
122
|
rexlimdva |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
124 |
70 123
|
syl5bi |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) |
125 |
124
|
imp44 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) e. L ) |
126 |
|
simprr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t C_ X ) |
127 |
|
simprlr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) C_ t ) |
128 |
|
filss |
|- ( ( L e. ( Fil ` X ) /\ ( ( F " s ) e. L /\ t C_ X /\ ( F " s ) C_ t ) ) -> t e. L ) |
129 |
68 125 126 127 128
|
syl13anc |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t e. L ) |
130 |
129
|
exp44 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
131 |
130
|
rexlimdv |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) |
132 |
131
|
impcomd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) -> t e. L ) ) |
133 |
67 132
|
impbid |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
134 |
2
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) |
135 |
|
rnelfmlem |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |
136 |
|
simpl3 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) |
137 |
|
elfm |
|- ( ( X e. L /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
138 |
134 135 136 137
|
syl3anc |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) |
139 |
133 138
|
bitr4d |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) |
140 |
139
|
eqrdv |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L = ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) |
141 |
7
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) |
142 |
|
fnfvelrn |
|- ( ( ( X FilMap F ) Fn ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) |
143 |
141 135 142
|
syl2anc |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) |
144 |
140 143
|
eqeltrd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ran ( X FilMap F ) ) |
145 |
144
|
ex |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> L e. ran ( X FilMap F ) ) ) |
146 |
33 145
|
impbid |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> ran F e. L ) ) |