| Step | Hyp | Ref | Expression | 
						
							| 1 |  | filtop |  |-  ( L e. ( Fil ` X ) -> X e. L ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) | 
						
							| 3 |  | simp1 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y e. A ) | 
						
							| 4 |  | simp3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> F : Y --> X ) | 
						
							| 5 |  | fmf |  |-  ( ( X e. L /\ Y e. A /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) : ( fBas ` Y ) --> ( Fil ` X ) ) | 
						
							| 7 | 6 | ffnd |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) | 
						
							| 8 |  | fvelrnb |  |-  ( ( X FilMap F ) Fn ( fBas ` Y ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L ) ) | 
						
							| 10 |  | ffn |  |-  ( F : Y --> X -> F Fn Y ) | 
						
							| 11 |  | dffn4 |  |-  ( F Fn Y <-> F : Y -onto-> ran F ) | 
						
							| 12 | 10 11 | sylib |  |-  ( F : Y --> X -> F : Y -onto-> ran F ) | 
						
							| 13 |  | foima |  |-  ( F : Y -onto-> ran F -> ( F " Y ) = ran F ) | 
						
							| 14 | 12 13 | syl |  |-  ( F : Y --> X -> ( F " Y ) = ran F ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) = ran F ) | 
						
							| 16 |  | simpll |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> X e. L ) | 
						
							| 17 |  | simpr |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> b e. ( fBas ` Y ) ) | 
						
							| 18 |  | simplr |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> F : Y --> X ) | 
						
							| 19 |  | fgcl |  |-  ( b e. ( fBas ` Y ) -> ( Y filGen b ) e. ( Fil ` Y ) ) | 
						
							| 20 |  | filtop |  |-  ( ( Y filGen b ) e. ( Fil ` Y ) -> Y e. ( Y filGen b ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( b e. ( fBas ` Y ) -> Y e. ( Y filGen b ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> Y e. ( Y filGen b ) ) | 
						
							| 23 |  | eqid |  |-  ( Y filGen b ) = ( Y filGen b ) | 
						
							| 24 | 23 | imaelfm |  |-  ( ( ( X e. L /\ b e. ( fBas ` Y ) /\ F : Y --> X ) /\ Y e. ( Y filGen b ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) | 
						
							| 25 | 16 17 18 22 24 | syl31anc |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( F " Y ) e. ( ( X FilMap F ) ` b ) ) | 
						
							| 26 | 15 25 | eqeltrrd |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ran F e. ( ( X FilMap F ) ` b ) ) | 
						
							| 27 |  | eleq2 |  |-  ( ( ( X FilMap F ) ` b ) = L -> ( ran F e. ( ( X FilMap F ) ` b ) <-> ran F e. L ) ) | 
						
							| 28 | 26 27 | syl5ibcom |  |-  ( ( ( X e. L /\ F : Y --> X ) /\ b e. ( fBas ` Y ) ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( X e. L /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) | 
						
							| 30 | 1 29 | sylan |  |-  ( ( L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) | 
						
							| 31 | 30 | 3adant1 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( b e. ( fBas ` Y ) -> ( ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) ) | 
						
							| 32 | 31 | rexlimdv |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( E. b e. ( fBas ` Y ) ( ( X FilMap F ) ` b ) = L -> ran F e. L ) ) | 
						
							| 33 | 9 32 | sylbid |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) -> ran F e. L ) ) | 
						
							| 34 |  | simpl2 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ( Fil ` X ) ) | 
						
							| 35 |  | filelss |  |-  ( ( L e. ( Fil ` X ) /\ t e. L ) -> t C_ X ) | 
						
							| 36 | 35 | ex |  |-  ( L e. ( Fil ` X ) -> ( t e. L -> t C_ X ) ) | 
						
							| 37 | 34 36 | syl |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> t C_ X ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> t e. L ) | 
						
							| 39 |  | eqidd |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) = ( `' F " t ) ) | 
						
							| 40 |  | imaeq2 |  |-  ( x = t -> ( `' F " x ) = ( `' F " t ) ) | 
						
							| 41 | 40 | rspceeqv |  |-  ( ( t e. L /\ ( `' F " t ) = ( `' F " t ) ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) | 
						
							| 42 | 38 39 41 | syl2anc |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. x e. L ( `' F " t ) = ( `' F " x ) ) | 
						
							| 43 |  | simpl1 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) | 
						
							| 44 |  | cnvimass |  |-  ( `' F " t ) C_ dom F | 
						
							| 45 |  | fdm |  |-  ( F : Y --> X -> dom F = Y ) | 
						
							| 46 | 44 45 | sseqtrid |  |-  ( F : Y --> X -> ( `' F " t ) C_ Y ) | 
						
							| 47 | 46 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " t ) C_ Y ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) C_ Y ) | 
						
							| 49 | 43 48 | ssexd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " t ) e. _V ) | 
						
							| 50 |  | eqid |  |-  ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) | 
						
							| 51 | 50 | elrnmpt |  |-  ( ( `' F " t ) e. _V -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) | 
						
							| 52 | 49 51 | syl |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " t ) = ( `' F " x ) ) ) | 
						
							| 54 | 42 53 | mpbird |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 55 |  | ssid |  |-  ( `' F " t ) C_ ( `' F " t ) | 
						
							| 56 |  | ffun |  |-  ( F : Y --> X -> Fun F ) | 
						
							| 57 | 56 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> Fun F ) | 
						
							| 59 |  | funimass3 |  |-  ( ( Fun F /\ ( `' F " t ) C_ dom F ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) | 
						
							| 60 | 58 44 59 | sylancl |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( ( F " ( `' F " t ) ) C_ t <-> ( `' F " t ) C_ ( `' F " t ) ) ) | 
						
							| 61 | 55 60 | mpbiri |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> ( F " ( `' F " t ) ) C_ t ) | 
						
							| 62 |  | imaeq2 |  |-  ( s = ( `' F " t ) -> ( F " s ) = ( F " ( `' F " t ) ) ) | 
						
							| 63 | 62 | sseq1d |  |-  ( s = ( `' F " t ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " t ) ) C_ t ) ) | 
						
							| 64 | 63 | rspcev |  |-  ( ( ( `' F " t ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " ( `' F " t ) ) C_ t ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) | 
						
							| 65 | 54 61 64 | syl2anc |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ t e. L ) -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) | 
						
							| 66 | 65 | ex |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) | 
						
							| 67 | 37 66 | jcad |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L -> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) | 
						
							| 68 | 34 | adantr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> L e. ( Fil ` X ) ) | 
						
							| 69 | 50 | elrnmpt |  |-  ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) | 
						
							| 70 | 69 | elv |  |-  ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) | 
						
							| 71 |  | ssid |  |-  ( `' F " x ) C_ ( `' F " x ) | 
						
							| 72 | 57 | ad3antrrr |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> Fun F ) | 
						
							| 73 |  | cnvimass |  |-  ( `' F " x ) C_ dom F | 
						
							| 74 |  | funimass3 |  |-  ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) | 
						
							| 75 | 72 73 74 | sylancl |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( F " ( `' F " x ) ) C_ x <-> ( `' F " x ) C_ ( `' F " x ) ) ) | 
						
							| 76 | 71 75 | mpbiri |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ x ) | 
						
							| 77 |  | imassrn |  |-  ( F " ( `' F " x ) ) C_ ran F | 
						
							| 78 |  | ssin |  |-  ( ( ( F " ( `' F " x ) ) C_ x /\ ( F " ( `' F " x ) ) C_ ran F ) <-> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) | 
						
							| 79 | 76 77 78 | sylanblc |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) C_ ( x i^i ran F ) ) | 
						
							| 80 |  | elin |  |-  ( z e. ( x i^i ran F ) <-> ( z e. x /\ z e. ran F ) ) | 
						
							| 81 |  | fvelrnb |  |-  ( F Fn Y -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) | 
						
							| 82 | 10 81 | syl |  |-  ( F : Y --> X -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) | 
						
							| 83 | 82 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) | 
						
							| 84 | 83 | ad3antrrr |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F <-> E. y e. Y ( F ` y ) = z ) ) | 
						
							| 85 | 72 | ad2antrr |  |-  ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> Fun F ) | 
						
							| 86 | 85 73 | jctir |  |-  ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( Fun F /\ ( `' F " x ) C_ dom F ) ) | 
						
							| 87 | 57 | ad2antrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> Fun F ) | 
						
							| 88 | 87 | ad2antrr |  |-  ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> Fun F ) | 
						
							| 89 | 45 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> dom F = Y ) | 
						
							| 90 | 89 | ad3antrrr |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> dom F = Y ) | 
						
							| 91 | 90 | eleq2d |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( y e. dom F <-> y e. Y ) ) | 
						
							| 92 | 91 | biimpar |  |-  ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> y e. dom F ) | 
						
							| 93 |  | fvimacnv |  |-  ( ( Fun F /\ y e. dom F ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) | 
						
							| 94 | 88 92 93 | syl2anc |  |-  ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x <-> y e. ( `' F " x ) ) ) | 
						
							| 95 | 94 | biimpa |  |-  ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> y e. ( `' F " x ) ) | 
						
							| 96 |  | funfvima2 |  |-  ( ( Fun F /\ ( `' F " x ) C_ dom F ) -> ( y e. ( `' F " x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) | 
						
							| 97 | 86 95 96 | sylc |  |-  ( ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) /\ ( F ` y ) e. x ) -> ( F ` y ) e. ( F " ( `' F " x ) ) ) | 
						
							| 98 | 97 | ex |  |-  ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) ) | 
						
							| 99 |  | eleq1 |  |-  ( ( F ` y ) = z -> ( ( F ` y ) e. x <-> z e. x ) ) | 
						
							| 100 |  | eleq1 |  |-  ( ( F ` y ) = z -> ( ( F ` y ) e. ( F " ( `' F " x ) ) <-> z e. ( F " ( `' F " x ) ) ) ) | 
						
							| 101 | 99 100 | imbi12d |  |-  ( ( F ` y ) = z -> ( ( ( F ` y ) e. x -> ( F ` y ) e. ( F " ( `' F " x ) ) ) <-> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) | 
						
							| 102 | 98 101 | syl5ibcom |  |-  ( ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) /\ y e. Y ) -> ( ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) | 
						
							| 103 | 102 | rexlimdva |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( E. y e. Y ( F ` y ) = z -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) | 
						
							| 104 | 84 103 | sylbid |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ran F -> ( z e. x -> z e. ( F " ( `' F " x ) ) ) ) ) | 
						
							| 105 | 104 | impcomd |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( ( z e. x /\ z e. ran F ) -> z e. ( F " ( `' F " x ) ) ) ) | 
						
							| 106 | 80 105 | biimtrid |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( z e. ( x i^i ran F ) -> z e. ( F " ( `' F " x ) ) ) ) | 
						
							| 107 | 106 | ssrdv |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) C_ ( F " ( `' F " x ) ) ) | 
						
							| 108 | 79 107 | eqssd |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) = ( x i^i ran F ) ) | 
						
							| 109 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) | 
						
							| 110 | 109 | 3exp |  |-  ( L e. ( Fil ` X ) -> ( x e. L -> ( ran F e. L -> ( x i^i ran F ) e. L ) ) ) | 
						
							| 111 | 110 | com23 |  |-  ( L e. ( Fil ` X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) | 
						
							| 112 | 111 | 3ad2ant2 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> ( x e. L -> ( x i^i ran F ) e. L ) ) ) | 
						
							| 113 | 112 | imp31 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( x i^i ran F ) e. L ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( x i^i ran F ) e. L ) | 
						
							| 115 | 108 114 | eqeltrd |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) /\ ( ( F " ( `' F " x ) ) C_ t /\ t C_ X ) ) -> ( F " ( `' F " x ) ) e. L ) | 
						
							| 116 | 115 | exp32 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) | 
						
							| 117 |  | imaeq2 |  |-  ( s = ( `' F " x ) -> ( F " s ) = ( F " ( `' F " x ) ) ) | 
						
							| 118 | 117 | sseq1d |  |-  ( s = ( `' F " x ) -> ( ( F " s ) C_ t <-> ( F " ( `' F " x ) ) C_ t ) ) | 
						
							| 119 | 117 | eleq1d |  |-  ( s = ( `' F " x ) -> ( ( F " s ) e. L <-> ( F " ( `' F " x ) ) e. L ) ) | 
						
							| 120 | 119 | imbi2d |  |-  ( s = ( `' F " x ) -> ( ( t C_ X -> ( F " s ) e. L ) <-> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) | 
						
							| 121 | 118 120 | imbi12d |  |-  ( s = ( `' F " x ) -> ( ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) <-> ( ( F " ( `' F " x ) ) C_ t -> ( t C_ X -> ( F " ( `' F " x ) ) e. L ) ) ) ) | 
						
							| 122 | 116 121 | syl5ibrcom |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) | 
						
							| 123 | 122 | rexlimdva |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L s = ( `' F " x ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) | 
						
							| 124 | 70 123 | biimtrid |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> ( F " s ) e. L ) ) ) ) | 
						
							| 125 | 124 | imp44 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) e. L ) | 
						
							| 126 |  | simprr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t C_ X ) | 
						
							| 127 |  | simprlr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> ( F " s ) C_ t ) | 
						
							| 128 |  | filss |  |-  ( ( L e. ( Fil ` X ) /\ ( ( F " s ) e. L /\ t C_ X /\ ( F " s ) C_ t ) ) -> t e. L ) | 
						
							| 129 | 68 125 126 127 128 | syl13anc |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( s e. ran ( x e. L |-> ( `' F " x ) ) /\ ( F " s ) C_ t ) /\ t C_ X ) ) -> t e. L ) | 
						
							| 130 | 129 | exp44 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( s e. ran ( x e. L |-> ( `' F " x ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) | 
						
							| 131 | 130 | rexlimdv |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) | 
						
							| 132 | 131 | impcomd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) -> t e. L ) ) | 
						
							| 133 | 67 132 | impbid |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) | 
						
							| 134 | 2 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) | 
						
							| 135 |  | rnelfmlem |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) | 
						
							| 136 |  | simpl3 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) | 
						
							| 137 |  | elfm |  |-  ( ( X e. L /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) | 
						
							| 138 | 134 135 136 137 | syl3anc |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) <-> ( t C_ X /\ E. s e. ran ( x e. L |-> ( `' F " x ) ) ( F " s ) C_ t ) ) ) | 
						
							| 139 | 133 138 | bitr4d |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( t e. L <-> t e. ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) ) | 
						
							| 140 | 139 | eqrdv |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L = ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) ) | 
						
							| 141 | 7 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( X FilMap F ) Fn ( fBas ` Y ) ) | 
						
							| 142 |  | fnfvelrn |  |-  ( ( ( X FilMap F ) Fn ( fBas ` Y ) /\ ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) | 
						
							| 143 | 141 135 142 | syl2anc |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( X FilMap F ) ` ran ( x e. L |-> ( `' F " x ) ) ) e. ran ( X FilMap F ) ) | 
						
							| 144 | 140 143 | eqeltrd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> L e. ran ( X FilMap F ) ) | 
						
							| 145 | 144 | ex |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( ran F e. L -> L e. ran ( X FilMap F ) ) ) | 
						
							| 146 | 33 145 | impbid |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( L e. ran ( X FilMap F ) <-> ran F e. L ) ) |