| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) | 
						
							| 2 |  | cnvimass |  |-  ( `' F " x ) C_ dom F | 
						
							| 3 |  | simpl3 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) | 
						
							| 4 | 2 3 | fssdm |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) C_ Y ) | 
						
							| 5 | 1 4 | sselpwd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) e. ~P Y ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( `' F " x ) e. ~P Y ) | 
						
							| 7 | 6 | fmpttd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( x e. L |-> ( `' F " x ) ) : L --> ~P Y ) | 
						
							| 8 | 7 | frnd |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y ) | 
						
							| 9 |  | filtop |  |-  ( L e. ( Fil ` X ) -> X e. L ) | 
						
							| 10 | 9 | 3ad2ant2 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) | 
						
							| 12 |  | fimacnv |  |-  ( F : Y --> X -> ( `' F " X ) = Y ) | 
						
							| 13 | 12 | eqcomd |  |-  ( F : Y --> X -> Y = ( `' F " X ) ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y = ( `' F " X ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y = ( `' F " X ) ) | 
						
							| 16 |  | imaeq2 |  |-  ( x = X -> ( `' F " x ) = ( `' F " X ) ) | 
						
							| 17 | 16 | rspceeqv |  |-  ( ( X e. L /\ Y = ( `' F " X ) ) -> E. x e. L Y = ( `' F " x ) ) | 
						
							| 18 | 11 15 17 | syl2anc |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> E. x e. L Y = ( `' F " x ) ) | 
						
							| 19 |  | eqid |  |-  ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) | 
						
							| 20 | 19 | elrnmpt |  |-  ( Y e. A -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) | 
						
							| 23 | 18 22 | mpbird |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 24 | 23 | ne0d |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) =/= (/) ) | 
						
							| 25 |  | 0nelfil |  |-  ( L e. ( Fil ` X ) -> -. (/) e. L ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> -. (/) e. L ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. L ) | 
						
							| 28 |  | 0ex |  |-  (/) e. _V | 
						
							| 29 | 19 | elrnmpt |  |-  ( (/) e. _V -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) | 
						
							| 31 |  | ffn |  |-  ( F : Y --> X -> F Fn Y ) | 
						
							| 32 |  | fvelrnb |  |-  ( F Fn Y -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( F : Y --> X -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 34 | 33 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) | 
						
							| 36 |  | eleq1 |  |-  ( ( F ` z ) = y -> ( ( F ` z ) e. x <-> y e. x ) ) | 
						
							| 37 | 36 | biimparc |  |-  ( ( y e. x /\ ( F ` z ) = y ) -> ( F ` z ) e. x ) | 
						
							| 38 | 37 | ad2ant2l |  |-  ( ( ( x e. L /\ y e. x ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) | 
						
							| 39 | 38 | adantll |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) | 
						
							| 40 |  | ffun |  |-  ( F : Y --> X -> Fun F ) | 
						
							| 41 | 40 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) | 
						
							| 42 | 41 | ad3antrrr |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> Fun F ) | 
						
							| 43 |  | fdm |  |-  ( F : Y --> X -> dom F = Y ) | 
						
							| 44 | 43 | eleq2d |  |-  ( F : Y --> X -> ( z e. dom F <-> z e. Y ) ) | 
						
							| 45 | 44 | biimpar |  |-  ( ( F : Y --> X /\ z e. Y ) -> z e. dom F ) | 
						
							| 46 | 45 | 3ad2antl3 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ z e. Y ) -> z e. dom F ) | 
						
							| 47 | 46 | adantlr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ z e. Y ) -> z e. dom F ) | 
						
							| 48 | 47 | ad2ant2r |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. dom F ) | 
						
							| 49 |  | fvimacnv |  |-  ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) | 
						
							| 50 | 42 48 49 | syl2anc |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) | 
						
							| 51 | 39 50 | mpbid |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. ( `' F " x ) ) | 
						
							| 52 |  | n0i |  |-  ( z e. ( `' F " x ) -> -. ( `' F " x ) = (/) ) | 
						
							| 53 |  | eqcom |  |-  ( ( `' F " x ) = (/) <-> (/) = ( `' F " x ) ) | 
						
							| 54 | 52 53 | sylnib |  |-  ( z e. ( `' F " x ) -> -. (/) = ( `' F " x ) ) | 
						
							| 55 | 51 54 | syl |  |-  ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> -. (/) = ( `' F " x ) ) | 
						
							| 56 | 55 | rexlimdvaa |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( E. z e. Y ( F ` z ) = y -> -. (/) = ( `' F " x ) ) ) | 
						
							| 57 | 35 56 | sylbid |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F -> -. (/) = ( `' F " x ) ) ) | 
						
							| 58 | 57 | con2d |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) | 
						
							| 59 | 58 | expr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( y e. x -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) ) | 
						
							| 60 | 59 | com23 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( (/) = ( `' F " x ) -> ( y e. x -> -. y e. ran F ) ) ) | 
						
							| 61 | 60 | impr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( y e. x -> -. y e. ran F ) ) | 
						
							| 62 | 61 | alrimiv |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> A. y ( y e. x -> -. y e. ran F ) ) | 
						
							| 63 |  | imnan |  |-  ( ( y e. x -> -. y e. ran F ) <-> -. ( y e. x /\ y e. ran F ) ) | 
						
							| 64 |  | elin |  |-  ( y e. ( x i^i ran F ) <-> ( y e. x /\ y e. ran F ) ) | 
						
							| 65 | 63 64 | xchbinxr |  |-  ( ( y e. x -> -. y e. ran F ) <-> -. y e. ( x i^i ran F ) ) | 
						
							| 66 | 65 | albii |  |-  ( A. y ( y e. x -> -. y e. ran F ) <-> A. y -. y e. ( x i^i ran F ) ) | 
						
							| 67 |  | eq0 |  |-  ( ( x i^i ran F ) = (/) <-> A. y -. y e. ( x i^i ran F ) ) | 
						
							| 68 |  | eqcom |  |-  ( ( x i^i ran F ) = (/) <-> (/) = ( x i^i ran F ) ) | 
						
							| 69 | 66 67 68 | 3bitr2i |  |-  ( A. y ( y e. x -> -. y e. ran F ) <-> (/) = ( x i^i ran F ) ) | 
						
							| 70 | 62 69 | sylib |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) = ( x i^i ran F ) ) | 
						
							| 71 |  | simpll2 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> L e. ( Fil ` X ) ) | 
						
							| 72 |  | simprl |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> x e. L ) | 
						
							| 73 |  | simplr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ran F e. L ) | 
						
							| 74 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) | 
						
							| 75 | 71 72 73 74 | syl3anc |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( x i^i ran F ) e. L ) | 
						
							| 76 | 70 75 | eqeltrd |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) e. L ) | 
						
							| 77 | 76 | rexlimdvaa |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L (/) = ( `' F " x ) -> (/) e. L ) ) | 
						
							| 78 | 30 77 | biimtrid |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) -> (/) e. L ) ) | 
						
							| 79 | 27 78 | mtod |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 80 |  | df-nel |  |-  ( (/) e/ ran ( x e. L |-> ( `' F " x ) ) <-> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 81 | 79 80 | sylibr |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> (/) e/ ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 82 | 19 | elrnmpt |  |-  ( r e. _V -> ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) ) | 
						
							| 83 | 82 | elv |  |-  ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) | 
						
							| 84 |  | imaeq2 |  |-  ( x = u -> ( `' F " x ) = ( `' F " u ) ) | 
						
							| 85 | 84 | eqeq2d |  |-  ( x = u -> ( r = ( `' F " x ) <-> r = ( `' F " u ) ) ) | 
						
							| 86 | 85 | cbvrexvw |  |-  ( E. x e. L r = ( `' F " x ) <-> E. u e. L r = ( `' F " u ) ) | 
						
							| 87 | 83 86 | bitri |  |-  ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. u e. L r = ( `' F " u ) ) | 
						
							| 88 | 19 | elrnmpt |  |-  ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) | 
						
							| 89 | 88 | elv |  |-  ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) | 
						
							| 90 |  | imaeq2 |  |-  ( x = v -> ( `' F " x ) = ( `' F " v ) ) | 
						
							| 91 | 90 | eqeq2d |  |-  ( x = v -> ( s = ( `' F " x ) <-> s = ( `' F " v ) ) ) | 
						
							| 92 | 91 | cbvrexvw |  |-  ( E. x e. L s = ( `' F " x ) <-> E. v e. L s = ( `' F " v ) ) | 
						
							| 93 | 89 92 | bitri |  |-  ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. v e. L s = ( `' F " v ) ) | 
						
							| 94 | 87 93 | anbi12i |  |-  ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) | 
						
							| 95 |  | reeanv |  |-  ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) | 
						
							| 96 | 94 95 | bitr4i |  |-  ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) | 
						
							| 97 |  | filin |  |-  ( ( L e. ( Fil ` X ) /\ u e. L /\ v e. L ) -> ( u i^i v ) e. L ) | 
						
							| 98 | 97 | 3expb |  |-  ( ( L e. ( Fil ` X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) | 
						
							| 99 | 98 | adantlr |  |-  ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) | 
						
							| 100 |  | eqidd |  |-  ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) | 
						
							| 101 |  | imaeq2 |  |-  ( x = ( u i^i v ) -> ( `' F " x ) = ( `' F " ( u i^i v ) ) ) | 
						
							| 102 | 101 | rspceeqv |  |-  ( ( ( u i^i v ) e. L /\ ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) | 
						
							| 103 | 99 100 102 | syl2anc |  |-  ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) | 
						
							| 104 | 103 | 3adantl1 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) | 
						
							| 105 | 104 | ad2ant2r |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) | 
						
							| 106 |  | simpll1 |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> Y e. A ) | 
						
							| 107 |  | cnvimass |  |-  ( `' F " ( u i^i v ) ) C_ dom F | 
						
							| 108 | 107 43 | sseqtrid |  |-  ( F : Y --> X -> ( `' F " ( u i^i v ) ) C_ Y ) | 
						
							| 109 | 108 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) C_ Y ) | 
						
							| 110 | 109 | ad2antrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ Y ) | 
						
							| 111 | 106 110 | ssexd |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. _V ) | 
						
							| 112 | 19 | elrnmpt |  |-  ( ( `' F " ( u i^i v ) ) e. _V -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) | 
						
							| 113 | 111 112 | syl |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) | 
						
							| 114 | 105 113 | mpbird |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) ) | 
						
							| 115 |  | simprrl |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> r = ( `' F " u ) ) | 
						
							| 116 |  | simprrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> s = ( `' F " v ) ) | 
						
							| 117 | 115 116 | ineq12d |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) | 
						
							| 118 |  | funcnvcnv |  |-  ( Fun F -> Fun `' `' F ) | 
						
							| 119 |  | imain |  |-  ( Fun `' `' F -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) | 
						
							| 120 | 40 118 119 | 3syl |  |-  ( F : Y --> X -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) | 
						
							| 121 | 120 | 3ad2ant3 |  |-  ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) | 
						
							| 122 | 121 | ad2antrr |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) | 
						
							| 123 | 117 122 | eqtr4d |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( `' F " ( u i^i v ) ) ) | 
						
							| 124 |  | eqimss2 |  |-  ( ( r i^i s ) = ( `' F " ( u i^i v ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) | 
						
							| 125 | 123 124 | syl |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) | 
						
							| 126 |  | sseq1 |  |-  ( t = ( `' F " ( u i^i v ) ) -> ( t C_ ( r i^i s ) <-> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) ) | 
						
							| 127 | 126 | rspcev |  |-  ( ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) | 
						
							| 128 | 114 125 127 | syl2anc |  |-  ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) | 
						
							| 129 | 128 | exp32 |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( u e. L /\ v e. L ) -> ( ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) | 
						
							| 130 | 129 | rexlimdvv |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) | 
						
							| 131 | 96 130 | biimtrid |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) | 
						
							| 132 | 131 | ralrimivv |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) | 
						
							| 133 | 24 81 132 | 3jca |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) | 
						
							| 134 |  | isfbas2 |  |-  ( Y e. A -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) | 
						
							| 135 | 1 134 | syl |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) | 
						
							| 136 | 8 133 135 | mpbir2and |  |-  ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |