Step |
Hyp |
Ref |
Expression |
1 |
|
dfrn2 |
|- ran _E = { x | E. y y _E x } |
2 |
|
nfab1 |
|- F/_ x { x | E. y y _E x } |
3 |
|
nfcv |
|- F/_ x ( _V \ { (/) } ) |
4 |
|
abid |
|- ( x e. { x | E. y y _E x } <-> E. y y _E x ) |
5 |
|
epel |
|- ( y _E x <-> y e. x ) |
6 |
5
|
exbii |
|- ( E. y y _E x <-> E. y y e. x ) |
7 |
|
neq0 |
|- ( -. x = (/) <-> E. y y e. x ) |
8 |
7
|
bicomi |
|- ( E. y y e. x <-> -. x = (/) ) |
9 |
|
velsn |
|- ( x e. { (/) } <-> x = (/) ) |
10 |
9
|
bicomi |
|- ( x = (/) <-> x e. { (/) } ) |
11 |
10
|
notbii |
|- ( -. x = (/) <-> -. x e. { (/) } ) |
12 |
6 8 11
|
3bitri |
|- ( E. y y _E x <-> -. x e. { (/) } ) |
13 |
|
velcomp |
|- ( x e. ( _V \ { (/) } ) <-> -. x e. { (/) } ) |
14 |
13
|
bicomi |
|- ( -. x e. { (/) } <-> x e. ( _V \ { (/) } ) ) |
15 |
4 12 14
|
3bitri |
|- ( x e. { x | E. y y _E x } <-> x e. ( _V \ { (/) } ) ) |
16 |
2 3 15
|
eqri |
|- { x | E. y y _E x } = ( _V \ { (/) } ) |
17 |
1 16
|
eqtri |
|- ran _E = ( _V \ { (/) } ) |