| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffn4 |  |-  ( F Fn A <-> F : A -onto-> ran F ) | 
						
							| 2 | 1 | biimpi |  |-  ( F Fn A -> F : A -onto-> ran F ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> ran F ) | 
						
							| 4 |  | foeq3 |  |-  ( ran F = A -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) | 
						
							| 6 | 3 5 | mpbid |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> A ) | 
						
							| 7 |  | enrefg |  |-  ( A e. Fin -> A ~~ A ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A ~~ A ) | 
						
							| 9 |  | simp1 |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A e. Fin ) | 
						
							| 10 |  | fofinf1o |  |-  ( ( F : A -onto-> A /\ A ~~ A /\ A e. Fin ) -> F : A -1-1-onto-> A ) | 
						
							| 11 | 6 8 9 10 | syl3anc |  |-  ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -1-1-onto-> A ) |