Step |
Hyp |
Ref |
Expression |
1 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
2 |
1
|
biimpi |
|- ( F Fn A -> F : A -onto-> ran F ) |
3 |
2
|
3ad2ant2 |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> ran F ) |
4 |
|
foeq3 |
|- ( ran F = A -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> ( F : A -onto-> ran F <-> F : A -onto-> A ) ) |
6 |
3 5
|
mpbid |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -onto-> A ) |
7 |
|
enrefg |
|- ( A e. Fin -> A ~~ A ) |
8 |
7
|
3ad2ant1 |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A ~~ A ) |
9 |
|
simp1 |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> A e. Fin ) |
10 |
|
fofinf1o |
|- ( ( F : A -onto-> A /\ A ~~ A /\ A e. Fin ) -> F : A -1-1-onto-> A ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( A e. Fin /\ F Fn A /\ ran F = A ) -> F : A -1-1-onto-> A ) |