Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rng1nfld.m | |- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } | |
| Assertion | rng1nfld | |- ( Z e. V -> M e/ Field ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rng1nfld.m |  |-  M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } | |
| 2 | 1 | rng1nnzr | |- ( Z e. V -> M e/ NzRing ) | 
| 3 | df-nel | |- ( M e/ NzRing <-> -. M e. NzRing ) | |
| 4 | 2 3 | sylib | |- ( Z e. V -> -. M e. NzRing ) | 
| 5 | drngnzr | |- ( M e. DivRing -> M e. NzRing ) | |
| 6 | 4 5 | nsyl | |- ( Z e. V -> -. M e. DivRing ) | 
| 7 | isfld | |- ( M e. Field <-> ( M e. DivRing /\ M e. CRing ) ) | |
| 8 | 7 | simplbi | |- ( M e. Field -> M e. DivRing ) | 
| 9 | 6 8 | nsyl | |- ( Z e. V -> -. M e. Field ) | 
| 10 | df-nel | |- ( M e/ Field <-> -. M e. Field ) | |
| 11 | 9 10 | sylibr | |- ( Z e. V -> M e/ Field ) |