Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rng1nfld.m | |- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } |
|
Assertion | rng1nfld | |- ( Z e. V -> M e/ Field ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng1nfld.m | |- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } |
|
2 | 1 | rng1nnzr | |- ( Z e. V -> M e/ NzRing ) |
3 | df-nel | |- ( M e/ NzRing <-> -. M e. NzRing ) |
|
4 | 2 3 | sylib | |- ( Z e. V -> -. M e. NzRing ) |
5 | drngnzr | |- ( M e. DivRing -> M e. NzRing ) |
|
6 | 4 5 | nsyl | |- ( Z e. V -> -. M e. DivRing ) |
7 | isfld | |- ( M e. Field <-> ( M e. DivRing /\ M e. CRing ) ) |
|
8 | simpl | |- ( ( M e. DivRing /\ M e. CRing ) -> M e. DivRing ) |
|
9 | 8 | a1i | |- ( Z e. V -> ( ( M e. DivRing /\ M e. CRing ) -> M e. DivRing ) ) |
10 | 7 9 | syl5bi | |- ( Z e. V -> ( M e. Field -> M e. DivRing ) ) |
11 | 6 10 | mtod | |- ( Z e. V -> -. M e. Field ) |
12 | df-nel | |- ( M e/ Field <-> -. M e. Field ) |
|
13 | 11 12 | sylibr | |- ( Z e. V -> M e/ Field ) |