Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rng1nnzr.m | |- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } |
|
Assertion | rng1nnzr | |- ( Z e. V -> M e/ NzRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng1nnzr.m | |- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } |
|
2 | snex | |- { Z } e. _V |
|
3 | 1 | rngbase | |- ( { Z } e. _V -> { Z } = ( Base ` M ) ) |
4 | 2 3 | mp1i | |- ( Z e. V -> { Z } = ( Base ` M ) ) |
5 | 4 | eqcomd | |- ( Z e. V -> ( Base ` M ) = { Z } ) |
6 | 5 | fveq2d | |- ( Z e. V -> ( # ` ( Base ` M ) ) = ( # ` { Z } ) ) |
7 | hashsng | |- ( Z e. V -> ( # ` { Z } ) = 1 ) |
|
8 | 6 7 | eqtrd | |- ( Z e. V -> ( # ` ( Base ` M ) ) = 1 ) |
9 | 1 | ring1 | |- ( Z e. V -> M e. Ring ) |
10 | 0ringnnzr | |- ( M e. Ring -> ( ( # ` ( Base ` M ) ) = 1 <-> -. M e. NzRing ) ) |
|
11 | 9 10 | syl | |- ( Z e. V -> ( ( # ` ( Base ` M ) ) = 1 <-> -. M e. NzRing ) ) |
12 | 8 11 | mpbid | |- ( Z e. V -> -. M e. NzRing ) |
13 | df-nel | |- ( M e/ NzRing <-> -. M e. NzRing ) |
|
14 | 12 13 | sylibr | |- ( Z e. V -> M e/ NzRing ) |