Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngacl.b | |- B = ( Base ` R ) |
|
rngacl.p | |- .+ = ( +g ` R ) |
||
Assertion | rngacl | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngacl.b | |- B = ( Base ` R ) |
|
2 | rngacl.p | |- .+ = ( +g ` R ) |
|
3 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
4 | 1 2 | grpcl | |- ( ( R e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
5 | 3 4 | syl3an1 | |- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |