Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcbas.c | |- C = ( RngCat ` U ) |
|
| rngcbas.b | |- B = ( Base ` C ) |
||
| rngcbas.u | |- ( ph -> U e. V ) |
||
| rngchomfval.h | |- H = ( Hom ` C ) |
||
| rngchom.x | |- ( ph -> X e. B ) |
||
| rngchom.y | |- ( ph -> Y e. B ) |
||
| Assertion | rngchom | |- ( ph -> ( X H Y ) = ( X RngHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbas.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcbas.b | |- B = ( Base ` C ) |
|
| 3 | rngcbas.u | |- ( ph -> U e. V ) |
|
| 4 | rngchomfval.h | |- H = ( Hom ` C ) |
|
| 5 | rngchom.x | |- ( ph -> X e. B ) |
|
| 6 | rngchom.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 4 | rngchomfval | |- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
| 8 | 7 | oveqd | |- ( ph -> ( X H Y ) = ( X ( RngHom |` ( B X. B ) ) Y ) ) |
| 9 | 5 6 | ovresd | |- ( ph -> ( X ( RngHom |` ( B X. B ) ) Y ) = ( X RngHom Y ) ) |
| 10 | 8 9 | eqtrd | |- ( ph -> ( X H Y ) = ( X RngHom Y ) ) |