| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcl.b |
|- B = ( Base ` R ) |
| 2 |
|
rngcl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 4 |
3
|
rngmgp |
|- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
| 5 |
|
sgrpmgm |
|- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) |
| 6 |
4 5
|
syl |
|- ( R e. Rng -> ( mulGrp ` R ) e. Mgm ) |
| 7 |
3 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 8 |
3 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
| 9 |
7 8
|
mgmcl |
|- ( ( ( mulGrp ` R ) e. Mgm /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 10 |
6 9
|
syl3an1 |
|- ( ( R e. Rng /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |