| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rngcrescrhm.u | 
							 |-  ( ph -> U e. V )  | 
						
						
							| 2 | 
							
								
							 | 
							rngcrescrhm.c | 
							 |-  C = ( RngCat ` U )  | 
						
						
							| 3 | 
							
								
							 | 
							rngcrescrhm.r | 
							 |-  ( ph -> R = ( Ring i^i U ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rngcrescrhm.h | 
							 |-  H = ( RingHom |` ( R X. R ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( C |`cat H ) = ( C |`cat H )  | 
						
						
							| 6 | 
							
								2
							 | 
							fvexi | 
							 |-  C e. _V  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ph -> C e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							incom | 
							 |-  ( Ring i^i U ) = ( U i^i Ring )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							eqtrdi | 
							 |-  ( ph -> R = ( U i^i Ring ) )  | 
						
						
							| 10 | 
							
								
							 | 
							inex1g | 
							 |-  ( U e. V -> ( U i^i Ring ) e. _V )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							syl | 
							 |-  ( ph -> ( U i^i Ring ) e. _V )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eqeltrd | 
							 |-  ( ph -> R e. _V )  | 
						
						
							| 13 | 
							
								
							 | 
							inss1 | 
							 |-  ( Ring i^i U ) C_ Ring  | 
						
						
							| 14 | 
							
								3 13
							 | 
							eqsstrdi | 
							 |-  ( ph -> R C_ Ring )  | 
						
						
							| 15 | 
							
								
							 | 
							xpss12 | 
							 |-  ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) )  | 
						
						
							| 16 | 
							
								14 14 15
							 | 
							syl2anc | 
							 |-  ( ph -> ( R X. R ) C_ ( Ring X. Ring ) )  | 
						
						
							| 17 | 
							
								
							 | 
							rhmfn | 
							 |-  RingHom Fn ( Ring X. Ring )  | 
						
						
							| 18 | 
							
								
							 | 
							fnssresb | 
							 |-  ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mp1i | 
							 |-  ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbird | 
							 |-  ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) )  | 
						
						
							| 21 | 
							
								4
							 | 
							fneq1i | 
							 |-  ( H Fn ( R X. R ) <-> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							 |-  ( ph -> H Fn ( R X. R ) )  | 
						
						
							| 23 | 
							
								5 7 12 22
							 | 
							rescval2 | 
							 |-  ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) )  |