| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmrcl |
|- ( F e. ( T RngHom U ) -> ( T e. Rng /\ U e. Rng ) ) |
| 2 |
1
|
simprd |
|- ( F e. ( T RngHom U ) -> U e. Rng ) |
| 3 |
|
rnghmrcl |
|- ( G e. ( S RngHom T ) -> ( S e. Rng /\ T e. Rng ) ) |
| 4 |
3
|
simpld |
|- ( G e. ( S RngHom T ) -> S e. Rng ) |
| 5 |
2 4
|
anim12ci |
|- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( S e. Rng /\ U e. Rng ) ) |
| 6 |
|
rnghmghm |
|- ( F e. ( T RngHom U ) -> F e. ( T GrpHom U ) ) |
| 7 |
|
rnghmghm |
|- ( G e. ( S RngHom T ) -> G e. ( S GrpHom T ) ) |
| 8 |
|
ghmco |
|- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 10 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
| 11 |
|
eqid |
|- ( mulGrp ` U ) = ( mulGrp ` U ) |
| 12 |
10 11
|
rnghmmgmhm |
|- ( F e. ( T RngHom U ) -> F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) ) |
| 13 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 14 |
13 10
|
rnghmmgmhm |
|- ( G e. ( S RngHom T ) -> G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
| 15 |
|
mgmhmco |
|- ( ( F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) |
| 16 |
12 14 15
|
syl2an |
|- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) |
| 17 |
9 16
|
jca |
|- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) ) |
| 18 |
13 11
|
isrnghmmul |
|- ( ( F o. G ) e. ( S RngHom U ) <-> ( ( S e. Rng /\ U e. Rng ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) ) ) |
| 19 |
5 17 18
|
sylanbrc |
|- ( ( F e. ( T RngHom U ) /\ G e. ( S RngHom T ) ) -> ( F o. G ) e. ( S RngHom U ) ) |