Description: A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghmmul.m | |- M = ( mulGrp ` R ) | |
| isrnghmmul.n | |- N = ( mulGrp ` S ) | ||
| Assertion | rnghmmgmhm | |- ( F e. ( R RngHom S ) -> F e. ( M MgmHom N ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isrnghmmul.m | |- M = ( mulGrp ` R ) | |
| 2 | isrnghmmul.n | |- N = ( mulGrp ` S ) | |
| 3 | 1 2 | isrnghmmul | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) | 
| 4 | 3 | simprbi | |- ( F e. ( R RngHom S ) -> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) | 
| 5 | 4 | simprd | |- ( F e. ( R RngHom S ) -> F e. ( M MgmHom N ) ) |