| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmmul.x |
|- X = ( Base ` R ) |
| 2 |
|
rnghmmul.m |
|- .x. = ( .r ` R ) |
| 3 |
|
rnghmmul.n |
|- .X. = ( .r ` S ) |
| 4 |
1 2 3
|
isrnghm |
|- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) ) |
| 5 |
|
fvoveq1 |
|- ( x = A -> ( F ` ( x .x. y ) ) = ( F ` ( A .x. y ) ) ) |
| 6 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 7 |
6
|
oveq1d |
|- ( x = A -> ( ( F ` x ) .X. ( F ` y ) ) = ( ( F ` A ) .X. ( F ` y ) ) ) |
| 8 |
5 7
|
eqeq12d |
|- ( x = A -> ( ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) <-> ( F ` ( A .x. y ) ) = ( ( F ` A ) .X. ( F ` y ) ) ) ) |
| 9 |
|
oveq2 |
|- ( y = B -> ( A .x. y ) = ( A .x. B ) ) |
| 10 |
9
|
fveq2d |
|- ( y = B -> ( F ` ( A .x. y ) ) = ( F ` ( A .x. B ) ) ) |
| 11 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
| 12 |
11
|
oveq2d |
|- ( y = B -> ( ( F ` A ) .X. ( F ` y ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| 13 |
10 12
|
eqeq12d |
|- ( y = B -> ( ( F ` ( A .x. y ) ) = ( ( F ` A ) .X. ( F ` y ) ) <-> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 14 |
8 13
|
rspc2va |
|- ( ( ( A e. X /\ B e. X ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |
| 15 |
14
|
expcom |
|- ( A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 16 |
15
|
ad2antll |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. X A. y e. X ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 17 |
4 16
|
sylbi |
|- ( F e. ( R RngHom S ) -> ( ( A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) ) |
| 18 |
17
|
3impib |
|- ( ( F e. ( R RngHom S ) /\ A e. X /\ B e. X ) -> ( F ` ( A .x. B ) ) = ( ( F ` A ) .X. ( F ` B ) ) ) |