| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 2 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 3 | 1 2 | isrnghmmul |  |-  ( h e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) | 
						
							| 4 |  | elin |  |-  ( h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) | 
						
							| 5 |  | ibar |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) ) | 
						
							| 6 | 4 5 | bitr2id |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) | 
						
							| 7 | 3 6 | bitrid |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( h e. ( R RngHom S ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) | 
						
							| 8 | 7 | eqrdv |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( R RngHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |