| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
rngidpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
rngidpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 4 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
4 5
|
mgpbas |
|- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 7 |
1 6
|
eqtrdi |
|- ( ph -> B = ( Base ` ( mulGrp ` K ) ) ) |
| 8 |
|
eqid |
|- ( mulGrp ` L ) = ( mulGrp ` L ) |
| 9 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 10 |
8 9
|
mgpbas |
|- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 11 |
2 10
|
eqtrdi |
|- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 12 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 13 |
4 12
|
mgpplusg |
|- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 14 |
13
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) |
| 15 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
| 16 |
8 15
|
mgpplusg |
|- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 17 |
16
|
oveqi |
|- ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) |
| 18 |
3 14 17
|
3eqtr3g |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 19 |
7 11 18
|
grpidpropd |
|- ( ph -> ( 0g ` ( mulGrp ` K ) ) = ( 0g ` ( mulGrp ` L ) ) ) |
| 20 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
| 21 |
4 20
|
ringidval |
|- ( 1r ` K ) = ( 0g ` ( mulGrp ` K ) ) |
| 22 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
| 23 |
8 22
|
ringidval |
|- ( 1r ` L ) = ( 0g ` ( mulGrp ` L ) ) |
| 24 |
19 21 23
|
3eqtr4g |
|- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |