Metamath Proof Explorer


Theorem rngimcnv

Description: The converse of an isomorphism of non-unital rings is an isomorphism of non-unital rings. (Contributed by AV, 27-Feb-2025)

Ref Expression
Assertion rngimcnv
|- ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) )

Proof

Step Hyp Ref Expression
1 rngimrcl
 |-  ( F e. ( S RngIso T ) -> ( S e. _V /\ T e. _V ) )
2 isrngim
 |-  ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) <-> ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) ) )
3 eqid
 |-  ( Base ` S ) = ( Base ` S )
4 eqid
 |-  ( Base ` T ) = ( Base ` T )
5 3 4 rnghmf
 |-  ( F e. ( S RngHom T ) -> F : ( Base ` S ) --> ( Base ` T ) )
6 frel
 |-  ( F : ( Base ` S ) --> ( Base ` T ) -> Rel F )
7 dfrel2
 |-  ( Rel F <-> `' `' F = F )
8 6 7 sylib
 |-  ( F : ( Base ` S ) --> ( Base ` T ) -> `' `' F = F )
9 5 8 syl
 |-  ( F e. ( S RngHom T ) -> `' `' F = F )
10 id
 |-  ( F e. ( S RngHom T ) -> F e. ( S RngHom T ) )
11 9 10 eqeltrd
 |-  ( F e. ( S RngHom T ) -> `' `' F e. ( S RngHom T ) )
12 11 anim1ci
 |-  ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) )
13 isrngim
 |-  ( ( T e. _V /\ S e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) )
14 13 ancoms
 |-  ( ( S e. _V /\ T e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) )
15 12 14 imbitrrid
 |-  ( ( S e. _V /\ T e. _V ) -> ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> `' F e. ( T RngIso S ) ) )
16 2 15 sylbid
 |-  ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) )
17 1 16 mpcom
 |-  ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) )