| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngimrcl |
|- ( F e. ( S RngIso T ) -> ( S e. _V /\ T e. _V ) ) |
| 2 |
|
isrngim |
|- ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) <-> ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) ) ) |
| 3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 4 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 5 |
3 4
|
rnghmf |
|- ( F e. ( S RngHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 6 |
|
frel |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> Rel F ) |
| 7 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 8 |
6 7
|
sylib |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> `' `' F = F ) |
| 9 |
5 8
|
syl |
|- ( F e. ( S RngHom T ) -> `' `' F = F ) |
| 10 |
|
id |
|- ( F e. ( S RngHom T ) -> F e. ( S RngHom T ) ) |
| 11 |
9 10
|
eqeltrd |
|- ( F e. ( S RngHom T ) -> `' `' F e. ( S RngHom T ) ) |
| 12 |
11
|
anim1ci |
|- ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) |
| 13 |
|
isrngim |
|- ( ( T e. _V /\ S e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) ) |
| 14 |
13
|
ancoms |
|- ( ( S e. _V /\ T e. _V ) -> ( `' F e. ( T RngIso S ) <-> ( `' F e. ( T RngHom S ) /\ `' `' F e. ( S RngHom T ) ) ) ) |
| 15 |
12 14
|
imbitrrid |
|- ( ( S e. _V /\ T e. _V ) -> ( ( F e. ( S RngHom T ) /\ `' F e. ( T RngHom S ) ) -> `' F e. ( T RngIso S ) ) ) |
| 16 |
2 15
|
sylbid |
|- ( ( S e. _V /\ T e. _V ) -> ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) ) |
| 17 |
1 16
|
mpcom |
|- ( F e. ( S RngIso T ) -> `' F e. ( T RngIso S ) ) |