| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmf1o.b |
|- B = ( Base ` R ) |
| 2 |
|
rnghmf1o.c |
|- C = ( Base ` S ) |
| 3 |
|
rngimrcl |
|- ( F e. ( R RngIso S ) -> ( R e. _V /\ S e. _V ) ) |
| 4 |
1 2
|
isrngim2 |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 5 |
|
simpr |
|- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
| 6 |
4 5
|
biimtrdi |
|- ( ( R e. _V /\ S e. _V ) -> ( F e. ( R RngIso S ) -> F : B -1-1-onto-> C ) ) |
| 7 |
3 6
|
mpcom |
|- ( F e. ( R RngIso S ) -> F : B -1-1-onto-> C ) |