| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngisom1.1 |
|- .1. = ( 1r ` R ) |
| 2 |
|
rngisom1.b |
|- B = ( Base ` S ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
3 2
|
rngimf1o |
|- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> B ) |
| 5 |
|
f1of |
|- ( F : ( Base ` R ) -1-1-onto-> B -> F : ( Base ` R ) --> B ) |
| 6 |
4 5
|
syl |
|- ( F e. ( R RngIso S ) -> F : ( Base ` R ) --> B ) |
| 7 |
6
|
adantl |
|- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) --> B ) |
| 8 |
3 1
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 9 |
8
|
adantr |
|- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> .1. e. ( Base ` R ) ) |
| 10 |
7 9
|
ffvelcdmd |
|- ( ( R e. Ring /\ F e. ( R RngIso S ) ) -> ( F ` .1. ) e. B ) |