| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 3 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 4 |
1 2 3
|
rngisom1 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) |
| 5 |
|
eqidd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( Base ` S ) = ( Base ` S ) ) |
| 6 |
|
eqidd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( .r ` S ) = ( .r ` S ) ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
7 2
|
rngimf1o |
|- ( F e. ( R RngIso S ) -> F : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
| 9 |
|
f1of |
|- ( F : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 10 |
8 9
|
syl |
|- ( F e. ( R RngIso S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 12 |
7 1
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 14 |
11 13
|
ffvelcdmd |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 15 |
14
|
adantr |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( F ` ( 1r ` R ) ) e. ( Base ` S ) ) |
| 16 |
|
oveq2 |
|- ( x = y -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) ) |
| 17 |
|
id |
|- ( x = y -> x = y ) |
| 18 |
16 17
|
eqeq12d |
|- ( x = y -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x <-> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) ) |
| 19 |
|
oveq1 |
|- ( x = y -> ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) ) |
| 20 |
19 17
|
eqeq12d |
|- ( x = y -> ( ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x <-> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) |
| 21 |
18 20
|
anbi12d |
|- ( x = y -> ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) <-> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 22 |
21
|
rspccv |
|- ( A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) -> ( y e. ( Base ` S ) -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 23 |
22
|
adantl |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) ) |
| 24 |
|
simpl |
|- ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) |
| 25 |
23 24
|
syl6 |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) ) |
| 26 |
25
|
imp |
|- ( ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) /\ y e. ( Base ` S ) ) -> ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y ) |
| 27 |
|
simpr |
|- ( ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) |
| 28 |
23 27
|
syl6 |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( y e. ( Base ` S ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) ) |
| 29 |
28
|
imp |
|- ( ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) /\ y e. ( Base ` S ) ) -> ( y ( .r ` S ) ( F ` ( 1r ` R ) ) ) = y ) |
| 30 |
5 6 15 26 29
|
ringurd |
|- ( ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) /\ A. x e. ( Base ` S ) ( ( ( F ` ( 1r ` R ) ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( F ` ( 1r ` R ) ) ) = x ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 31 |
4 30
|
mpdan |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 32 |
31
|
eqcomd |
|- ( ( R e. Ring /\ S e. Rng /\ F e. ( R RngIso S ) ) -> ( 1r ` S ) = ( F ` ( 1r ` R ) ) ) |