Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidl0.u |
|- U = ( LIdeal ` R ) |
2 |
|
rnglidl0.z |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 2
|
rng0cl |
|- ( R e. Rng -> .0. e. ( Base ` R ) ) |
5 |
4
|
snssd |
|- ( R e. Rng -> { .0. } C_ ( Base ` R ) ) |
6 |
2
|
fvexi |
|- .0. e. _V |
7 |
6
|
a1i |
|- ( R e. Rng -> .0. e. _V ) |
8 |
7
|
snn0d |
|- ( R e. Rng -> { .0. } =/= (/) ) |
9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
10 |
3 9 2
|
rngrz |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .0. ) = .0. ) |
11 |
10
|
oveq1d |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = ( .0. ( +g ` R ) .0. ) ) |
12 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
13 |
3 2
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
15 |
3 14 2
|
grprid |
|- ( ( R e. Grp /\ .0. e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
16 |
12 13 15
|
syl2anc2 |
|- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
17 |
16
|
adantr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
18 |
11 17
|
eqtrd |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
19 |
6
|
elsn2 |
|- ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
20 |
18 19
|
sylibr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
21 |
|
oveq2 |
|- ( y = .0. -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) .0. ) ) |
22 |
21
|
oveq1d |
|- ( y = .0. -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) ) |
23 |
22
|
eleq1d |
|- ( y = .0. -> ( ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
24 |
23
|
ralbidv |
|- ( y = .0. -> ( A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
25 |
6 24
|
ralsn |
|- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) |
26 |
|
oveq2 |
|- ( z = .0. -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) ) |
27 |
26
|
eleq1d |
|- ( z = .0. -> ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) ) |
28 |
6 27
|
ralsn |
|- ( A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
29 |
25 28
|
bitri |
|- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
30 |
20 29
|
sylibr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
31 |
30
|
ralrimiva |
|- ( R e. Rng -> A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
32 |
1 3 14 9
|
islidl |
|- ( { .0. } e. U <-> ( { .0. } C_ ( Base ` R ) /\ { .0. } =/= (/) /\ A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) ) |
33 |
5 8 31 32
|
syl3anbrc |
|- ( R e. Rng -> { .0. } e. U ) |