| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidl0.u |  |-  U = ( LIdeal ` R ) | 
						
							| 2 |  | rnglidl0.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 | 3 2 | rng0cl |  |-  ( R e. Rng -> .0. e. ( Base ` R ) ) | 
						
							| 5 | 4 | snssd |  |-  ( R e. Rng -> { .0. } C_ ( Base ` R ) ) | 
						
							| 6 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 7 | 6 | a1i |  |-  ( R e. Rng -> .0. e. _V ) | 
						
							| 8 | 7 | snn0d |  |-  ( R e. Rng -> { .0. } =/= (/) ) | 
						
							| 9 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 10 | 3 9 2 | rngrz |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .0. ) = .0. ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = ( .0. ( +g ` R ) .0. ) ) | 
						
							| 12 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 13 | 3 2 | grpidcl |  |-  ( R e. Grp -> .0. e. ( Base ` R ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 15 | 3 14 2 | grprid |  |-  ( ( R e. Grp /\ .0. e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) | 
						
							| 16 | 12 13 15 | syl2anc2 |  |-  ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) | 
						
							| 17 | 16 | adantr |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) | 
						
							| 18 | 11 17 | eqtrd |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) | 
						
							| 19 | 6 | elsn2 |  |-  ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) | 
						
							| 21 |  | oveq2 |  |-  ( y = .0. -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) .0. ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( y = .0. -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( y = .0. -> ( ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) | 
						
							| 24 | 23 | ralbidv |  |-  ( y = .0. -> ( A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) | 
						
							| 25 | 6 24 | ralsn |  |-  ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) | 
						
							| 26 |  | oveq2 |  |-  ( z = .0. -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( z = .0. -> ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) ) | 
						
							| 28 | 6 27 | ralsn |  |-  ( A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) | 
						
							| 29 | 25 28 | bitri |  |-  ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) | 
						
							| 30 | 20 29 | sylibr |  |-  ( ( R e. Rng /\ x e. ( Base ` R ) ) -> A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) | 
						
							| 31 | 30 | ralrimiva |  |-  ( R e. Rng -> A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) | 
						
							| 32 | 1 3 14 9 | islidl |  |-  ( { .0. } e. U <-> ( { .0. } C_ ( Base ` R ) /\ { .0. } =/= (/) /\ A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) ) | 
						
							| 33 | 5 8 31 32 | syl3anbrc |  |-  ( R e. Rng -> { .0. } e. U ) |