| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidl0.u |  |-  U = ( LIdeal ` R ) | 
						
							| 2 |  | rnglidl1.b |  |-  B = ( Base ` R ) | 
						
							| 3 | 2 | eqimssi |  |-  B C_ ( Base ` R ) | 
						
							| 4 | 3 | a1i |  |-  ( R e. Rng -> B C_ ( Base ` R ) ) | 
						
							| 5 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 6 | 2 | grpbn0 |  |-  ( R e. Grp -> B =/= (/) ) | 
						
							| 7 | 5 6 | syl |  |-  ( R e. Rng -> B =/= (/) ) | 
						
							| 8 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 9 | 5 | adantr |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Grp ) | 
						
							| 10 |  | simpl |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Rng ) | 
						
							| 11 | 2 | eqcomi |  |-  ( Base ` R ) = B | 
						
							| 12 | 11 | eleq2i |  |-  ( x e. ( Base ` R ) <-> x e. B ) | 
						
							| 13 | 12 | biimpi |  |-  ( x e. ( Base ` R ) -> x e. B ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) -> x e. B ) | 
						
							| 15 | 14 | adantl |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> x e. B ) | 
						
							| 16 |  | simpr2 |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> y e. B ) | 
						
							| 17 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 18 | 2 17 | rngcl |  |-  ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) e. B ) | 
						
							| 19 | 10 15 16 18 | syl3anc |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( x ( .r ` R ) y ) e. B ) | 
						
							| 20 |  | simpr3 |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> z e. B ) | 
						
							| 21 | 2 8 9 19 20 | grpcld |  |-  ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) | 
						
							| 22 | 21 | ralrimivvva |  |-  ( R e. Rng -> A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) | 
						
							| 23 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 24 | 1 23 8 17 | islidl |  |-  ( B e. U <-> ( B C_ ( Base ` R ) /\ B =/= (/) /\ A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) ) | 
						
							| 25 | 4 7 22 24 | syl3anbrc |  |-  ( R e. Rng -> B e. U ) |