| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidlabl.l |  |-  L = ( LIdeal ` R ) | 
						
							| 2 |  | rnglidlabl.i |  |-  I = ( R |`s U ) | 
						
							| 3 |  | rnglidlabl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | simp1 |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> R e. Rng ) | 
						
							| 5 | 1 2 | lidlbas |  |-  ( U e. L -> ( Base ` I ) = U ) | 
						
							| 6 |  | eleq1a |  |-  ( U e. L -> ( ( Base ` I ) = U -> ( Base ` I ) e. L ) ) | 
						
							| 7 | 5 6 | mpd |  |-  ( U e. L -> ( Base ` I ) e. L ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( Base ` I ) e. L ) | 
						
							| 9 | 5 | eqcomd |  |-  ( U e. L -> U = ( Base ` I ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( U e. L -> ( .0. e. U <-> .0. e. ( Base ` I ) ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) | 
						
							| 12 | 11 | 3adant1 |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) | 
						
							| 13 | 4 8 12 | 3jca |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) ) | 
						
							| 14 | 1 2 | lidlssbas |  |-  ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) | 
						
							| 15 | 14 | sseld |  |-  ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) | 
						
							| 16 | 15 | 3ad2ant2 |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) | 
						
							| 17 | 16 | anim1d |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 20 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 21 | 3 19 20 1 | rnglidlmcl |  |-  ( ( ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) | 
						
							| 22 | 13 18 21 | syl2an2r |  |-  ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) | 
						
							| 23 | 2 20 | ressmulr |  |-  ( U e. L -> ( .r ` R ) = ( .r ` I ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( U e. L -> ( .r ` I ) = ( .r ` R ) ) | 
						
							| 25 | 24 | oveqd |  |-  ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) | 
						
							| 26 | 25 | eleq1d |  |-  ( U e. L -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) | 
						
							| 29 | 22 28 | mpbird |  |-  ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` I ) b ) e. ( Base ` I ) ) | 
						
							| 30 | 29 | ralrimivva |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) | 
						
							| 31 |  | fvex |  |-  ( mulGrp ` I ) e. _V | 
						
							| 32 |  | eqid |  |-  ( mulGrp ` I ) = ( mulGrp ` I ) | 
						
							| 33 |  | eqid |  |-  ( Base ` I ) = ( Base ` I ) | 
						
							| 34 | 32 33 | mgpbas |  |-  ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) | 
						
							| 35 |  | eqid |  |-  ( .r ` I ) = ( .r ` I ) | 
						
							| 36 | 32 35 | mgpplusg |  |-  ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) | 
						
							| 37 | 34 36 | ismgm |  |-  ( ( mulGrp ` I ) e. _V -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) | 
						
							| 38 | 31 37 | mp1i |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) | 
						
							| 39 | 30 38 | mpbird |  |-  ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |