Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
rnglidlabl.i |
|- I = ( R |`s U ) |
3 |
|
rnglidlabl.z |
|- .0. = ( 0g ` R ) |
4 |
|
simp1 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> R e. Rng ) |
5 |
1 2
|
lidlbas |
|- ( U e. L -> ( Base ` I ) = U ) |
6 |
|
eleq1a |
|- ( U e. L -> ( ( Base ` I ) = U -> ( Base ` I ) e. L ) ) |
7 |
5 6
|
mpd |
|- ( U e. L -> ( Base ` I ) e. L ) |
8 |
7
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( Base ` I ) e. L ) |
9 |
5
|
eqcomd |
|- ( U e. L -> U = ( Base ` I ) ) |
10 |
9
|
eleq2d |
|- ( U e. L -> ( .0. e. U <-> .0. e. ( Base ` I ) ) ) |
11 |
10
|
biimpa |
|- ( ( U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) |
12 |
11
|
3adant1 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) |
13 |
4 8 12
|
3jca |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) ) |
14 |
1 2
|
lidlssbas |
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
15 |
14
|
sseld |
|- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
16 |
15
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
17 |
16
|
anim1d |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) ) |
18 |
17
|
imp |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
21 |
3 19 20 1
|
rnglidlmcl |
|- ( ( ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
22 |
13 18 21
|
syl2an2r |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
23 |
2 20
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
24 |
23
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
25 |
24
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
26 |
25
|
eleq1d |
|- ( U e. L -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
27 |
26
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
28 |
27
|
adantr |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
29 |
22 28
|
mpbird |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` I ) b ) e. ( Base ` I ) ) |
30 |
29
|
ralrimivva |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) |
31 |
|
fvex |
|- ( mulGrp ` I ) e. _V |
32 |
|
eqid |
|- ( mulGrp ` I ) = ( mulGrp ` I ) |
33 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
34 |
32 33
|
mgpbas |
|- ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) |
35 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
36 |
32 35
|
mgpplusg |
|- ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) |
37 |
34 36
|
ismgm |
|- ( ( mulGrp ` I ) e. _V -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
38 |
31 37
|
mp1i |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
39 |
30 38
|
mpbird |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |