Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
|- L = ( LIdeal ` R ) |
2 |
|
rnglidlabl.i |
|- I = ( R |`s U ) |
3 |
|
rnglidlabl.z |
|- .0. = ( 0g ` R ) |
4 |
1 2 3
|
rnglidlmmgm |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |
5 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
6 |
5
|
rngmgp |
|- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
7 |
6
|
3ad2ant1 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` R ) e. Smgrp ) |
8 |
1 2
|
lidlssbas |
|- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
9 |
8
|
sseld |
|- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
10 |
8
|
sseld |
|- ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) ) |
11 |
8
|
sseld |
|- ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) ) |
12 |
9 10 11
|
3anim123d |
|- ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
13 |
12
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
14 |
13
|
imp |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
5 15
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
5 17
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
19 |
16 18
|
sgrpass |
|- ( ( ( mulGrp ` R ) e. Smgrp /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
20 |
7 14 19
|
syl2an2r |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
21 |
2 17
|
ressmulr |
|- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
22 |
21
|
eqcomd |
|- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
23 |
22
|
oveqd |
|- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
24 |
|
eqidd |
|- ( U e. L -> c = c ) |
25 |
22 23 24
|
oveq123d |
|- ( U e. L -> ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` R ) b ) ( .r ` R ) c ) ) |
26 |
|
eqidd |
|- ( U e. L -> a = a ) |
27 |
22
|
oveqd |
|- ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) ) |
28 |
22 26 27
|
oveq123d |
|- ( U e. L -> ( a ( .r ` I ) ( b ( .r ` I ) c ) ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
29 |
25 28
|
eqeq12d |
|- ( U e. L -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
30 |
29
|
3ad2ant2 |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
31 |
30
|
adantr |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
32 |
20 31
|
mpbird |
|- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) |
33 |
32
|
ralrimivvva |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) |
34 |
|
eqid |
|- ( mulGrp ` I ) = ( mulGrp ` I ) |
35 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
36 |
34 35
|
mgpbas |
|- ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) |
37 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
38 |
34 37
|
mgpplusg |
|- ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) |
39 |
36 38
|
issgrp |
|- ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) |
40 |
4 33 39
|
sylanbrc |
|- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) |